Dodecic 3-adic fields

Chad Awtrey

Elon University cawtrey@elon.edu

December 3, 2011

Theorem

Theorem

Let n be a positive integer and p a prime number.

Theorem

Theorem

Let n be a positive integer and p a prime number. There are only finitely many extensions of \mathbf{Q}_p of degree n.

• Obvious question:

Theorem

Let n be a positive integer and p a prime number. There are only finitely many extensions of \mathbf{Q}_p of degree n.

• Obvious question: How many are there?

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n:

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.
- Quadratic extensions:

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- \bullet Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
;

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
; 3 otherwise

Theorem

Let n be a positive integer and p a prime number. There are only finitely many extensions of \mathbf{Q}_p of degree n.

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
; 3 otherwise

• Tamely ramified extensions (i.e. $p \nmid n$):

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- \bullet Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
; 3 otherwise

- Tamely ramified extensions (i.e. $p \nmid n$):
 - let n = ef

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
; 3 otherwise

- Tamely ramified extensions (i.e. $p \nmid n$):
 - let n = ef $g = \gcd(p^f 1, e)$

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
; 3 otherwise

- Tamely ramified extensions (i.e. $p \nmid n$):
 - let n = ef $g = \gcd(p^f 1, e)$
 - ullet partition ${f Z}/g{f Z}$ into orbits under multiplication by p

Theorem

- Obvious question: How many are there?
- In certain cases, we know the answer.
- Unramified extensions of degree n: only one.
- Quadratic extensions:

7 if
$$p = 2$$
; 3 otherwise

- Tamely ramified extensions (i.e. $p \nmid n$):
 - let n = ef $g = \gcd(p^f 1, e)$
 - partition $\mathbf{Z}/g\mathbf{Z}$ into orbits under multiplication by p
 - #orbits = #extensions

• What about wildly ramified extensions $(p \mid n)$?

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p :

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p : $p^2 + 1$

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p : $p^2 + 1$
- What if $p \mid n$ and n is composite?

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p : $p^2 + 1$
- What if $p \mid n$ and n is composite?
- No general formula is known.

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p : $p^2 + 1$
- What if $p \mid n$ and n is composite?
- No general formula is known.
- Jones/Roberts have pursued some low-degree cases.

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p : $p^2 + 1$
- What if $p \mid n$ and n is composite?
- No general formula is known.
- Jones/Roberts have pursued some low-degree cases. For example,

- What about wildly ramified extensions $(p \mid n)$?
- Degree p extensions of \mathbf{Q}_p : $p^2 + 1$
- What if $p \mid n$ and n is composite?
- No general formula is known.
- Jones/Roberts have pursued some low-degree cases. For example,

• Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- \bullet Factor f over \mathbf{Q}_p to obtain K 's associated p-adic algebra,

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- \bullet Factor f over \mathbf{Q}_p to obtain K 's associated p-adic algebra,

$$K\otimes \mathbf{Q}_p\simeq \prod_{j=1}^m K_j$$

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K \otimes \mathbf{Q}_p \simeq \prod_{j=1}^m K_j$$

• each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K \otimes \mathbf{Q}_p \simeq \prod_{j=1}^m K_j$$

- each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.
- To study K, we can determine arithmetic invariants of the K_j , such as

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K \otimes \mathbf{Q}_p \simeq \prod_{j=1}^m K_j$$

- each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.
- To study K, we can determine arithmetic invariants of the K_j , such as

discriminant

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K \otimes \mathbf{Q}_p \simeq \prod_{j=1}^m K_j$$

- each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.
- To study K, we can determine arithmetic invariants of the K_j , such as

discriminant ramification index

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K\otimes \mathbf{Q}_p\simeq \prod_{j=1}^m K_j$$

- each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.
- To study K, we can determine arithmetic invariants of the K_j , such as
 - discriminant ramification index residue degree

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K\otimes \mathbf{Q}_p\simeq \prod_{j=1}^m K_j$$

- each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.
- To study K, we can determine arithmetic invariants of the K_j , such as

discriminant ramification index residue degree subfields

- Let K/\mathbf{Q} be defined by some monic irreducible $f(x) \in \mathbf{Z}[x]$.
- Factor f over \mathbf{Q}_p to obtain K's associated p-adic algebra,

$$K \otimes \mathbf{Q}_p \simeq \prod_{j=1}^m K_j$$

- each K_j is a finite extension of \mathbf{Q}_p , defined by the corresponding irreducible factor of f.
- To study K, we can determine arithmetic invariants of the K_j , such as

discriminant ramification index residue degree subfields Galois group

This Talk

 \bullet In this talk, we'll discuss a technique for determining

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - $\bullet\,$ the Galois group of the normal closure of each extension

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield
 - narrow down the list of possible Galois groups

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield
 - narrow down the list of possible Galois groups
 - 2. Compute a defining polynomial (which gives the number of extensions)

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield
 - narrow down the list of possible Galois groups
 - 2. Compute a defining polynomial (which gives the number of extensions)
 - 3. Compute the Galois group of each polynomial over \mathbf{Q}_3

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield
 - narrow down the list of possible Galois groups
 - 2. Compute a defining polynomial (which gives the number of extensions)
 - 3. Compute the Galois group of each polynomial over \mathbf{Q}_3
- Item 2. can be done using the methods of Pauli/Roblot.

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield
 - narrow down the list of possible Galois groups
 - 2. Compute a defining polynomial (which gives the number of extensions)
 - 3. Compute the Galois group of each polynomial over \mathbf{Q}_3
- Item 2. can be done using the methods of Pauli/Roblot. Our method is a slight variation, and computationally less expensive.

- In this talk, we'll discuss a technique for determining
 - the number of degree 12 extensions of \mathbf{Q}_3
 - the Galois group of the normal closure of each extension
- Here's the strategy
 - 1. Use ramification groups to
 - show each such extension has a unique quartic subfield
 - narrow down the list of possible Galois groups
 - 2. Compute a defining polynomial (which gives the number of extensions)
 - 3. Compute the Galois group of each polynomial over \mathbf{Q}_3
- Item 2. can be done using the methods of Pauli/Roblot. Our method is a slight variation, and computationally less expensive.
- Item 3. uses a mix of absolute/relative resolvents and subfield invariants.

• Suppose $[K : \mathbf{Q}_3] = 12$.

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Higher ramification group theory gives:

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Higher ramification group theory gives:
 - G is a solvable transitive subgroup of S_{12} (there are 265).

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Higher ramification group theory gives:
 - G is a solvable transitive subgroup of S_{12} (there are 265).
 - G contains a solvable normal subgroup G_0 such that G/G_0 is cyclic of order dividing 12.

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Higher ramification group theory gives:
 - G is a solvable transitive subgroup of S_{12} (there are 265).
 - G contains a solvable normal subgroup G_0 such that G/G_0 is cyclic of order dividing 12.
 - G_0 contains a normal subgroup G_1 such that G_1 is a 3-group (possibly trivial).

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Higher ramification group theory gives:
 - G is a solvable transitive subgroup of S_{12} (there are 265).
 - G contains a solvable normal subgroup G_0 such that G/G_0 is cyclic of order dividing 12.
 - G_0 contains a normal subgroup G_1 such that G_1 is a 3-group (possibly trivial).
 - G_0/G_1 is cyclic of order dividing $3^{[G:G_0]} 1$.

- Suppose $[K : \mathbf{Q}_3] = 12$.
- Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Higher ramification group theory gives:
 - G is a solvable transitive subgroup of S_{12} (there are 265).
 - G contains a solvable normal subgroup G_0 such that G/G_0 is cyclic of order dividing 12.
 - G_0 contains a normal subgroup G_1 such that G_1 is a 3-group (possibly trivial).
 - G_0/G_1 is cyclic of order dividing $3^{[G:G_0]} 1$.
- Only 45 of the 265 groups pass the test.

Using notation in Gap, these groups are TransitiveGroup(12,n), where n is one of:

Using notation in Gap, these groups are TransitiveGroup(12,n), where n is one of:

1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 36, 38, 39, 40, 41, 42, 46, 47, 70, 71, 72, 73, 84, 116, 118, 119, 120, 121, 130, 131, 167, 169, 170, 171, 172, 173, 174, 212, 215, 216

Using notation in Gap, these groups are TransitiveGroup(12,n), where n is one of:

1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 36, 38, 39, 40, 41, 42, 46, 47, 70, 71, 72, 73, 84, 116, 118, 119, 120, 121, 130, 131, 167, 169, 170, 171, 172, 173, 174, 212, 215, 216

Note:

Using notation in Gap, these groups are TransitiveGroup(12,n), where n is one of:

1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 36, 38, 39, 40, 41, 42, 46, 47, 70, 71, 72, 73, 84, 116, 118, 119, 120, 121, 130, 131, 167, 169, 170, 171, 172, 173, 174, 212, 215, 216

Note:

TransitiveGroup(12,1) = C_{12} .

Using notation in Gap, these groups are TransitiveGroup(12,n), where n is one of:

1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 36, 38, 39, 40, 41, 42, 46, 47, 70, 71, 72, 73, 84, 116, 118, 119, 120, 121, 130, 131, 167, 169, 170, 171, 172, 173, 174, 212, 215, 216

Note:

TransitiveGroup(12,1) = C_{12} . TransitiveGroup(12,301) = S_{12} .

• Claim: K/\mathbf{Q}_3 has a unique quartic subfield.

- Claim: K/\mathbf{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.
- Specifically,
 - \bullet Let L be a subfield of K.

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.
- Specifically,
 - Let L be a subfield of K.
 - Let F be its corresponding intermediate group,

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.
- Specifically,
 - Let L be a subfield of K.
 - \bullet Let F be its corresponding intermediate group,
 - Let G act on the cosets of F.

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.
- Specifically,
 - Let L be a subfield of K.
 - Let F be its corresponding intermediate group,
 - Let G act on the cosets of F.
 - The permutation representation of this action is the Galois group of $L^{\text{gal}}/\mathbf{Q}_3$. (We'll use this later)!

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.
- Specifically,
 - \bullet Let L be a subfield of K.
 - \bullet Let F be its corresponding intermediate group,
 - Let G act on the cosets of F.
 - The permutation representation of this action is the Galois group of $L^{\text{gal}}/\mathbf{Q}_3$. (We'll use this later)!
- Direct computation shows all 45 groups have a unique such intermediate group F of index 4.

- Claim: K/\mathbb{Q}_3 has a unique quartic subfield.
- Proof: Let $G = \operatorname{Gal}(K^{\operatorname{gal}}/\mathbf{Q}_3)$.
- Let $E \subseteq G$ be the subgroup that fixes K.
- The non-isomorphic subfields of K correspond to conjugacy classes of intermediate subgroups F such that $E \subseteq F \subseteq G$.
- Specifically,
 - \bullet Let L be a subfield of K.
 - \bullet Let F be its corresponding intermediate group,
 - Let G act on the cosets of F.
 - The permutation representation of this action is the Galois group of $L^{\text{gal}}/\mathbf{Q}_3$. (We'll use this later)!
- Direct computation shows all 45 groups have a unique such intermediate group F of index 4.
- \bullet Thus all extensions K have a unique quartic subfield.

Defining Polynomials

• Corollary: Every degree 12 extension of \mathbf{Q}_3 can be realized uniquely as a cubic extension of a quartic 3-adic field.

Defining Polynomials

- Corollary: Every degree 12 extension of \mathbf{Q}_3 can be realized uniquely as a cubic extension of a quartic 3-adic field.
- Defining polynomials can therefore be computed by evaluating appropriate resultants.

Defining Polynomials

- Corollary: Every degree 12 extension of \mathbf{Q}_3 can be realized uniquely as a cubic extension of a quartic 3-adic field.
- Defining polynomials can therefore be computed by evaluating appropriate resultants.
- Quartic 3-adic fields are tamely ramified, therefore easily classified.

Defining Polynomials

- Corollary: Every degree 12 extension of \mathbf{Q}_3 can be realized uniquely as a cubic extension of a quartic 3-adic field.
- Defining polynomials can therefore be computed by evaluating appropriate resultants.
- Quartic 3-adic fields are tamely ramified, therefore easily classified.

\mathbf{e}	f	poly
1	4	$x^4 - x + 2$
2	2	$x^4 + 9x^2 + 36$
2	2	$x^4 - 3x^2 + 18$
4	1	$x^4 + 3$
4	1	$x^4 - 3$

• We use Amano's methods for determining cubic extensions of the quartic 3-adic fields.

- We use Amano's methods for determining cubic extensions of the quartic 3-adic fields.
- Using resultants, we produce a list of degree 12 polynomials.

- We use Amano's methods for determining cubic extensions of the quartic 3-adic fields.
- Using resultants, we produce a list of degree 12 polynomials.
- Panayi's p-adic root-finding algorithm is used to discard isomorphic extensions.

- We use Amano's methods for determining cubic extensions of the quartic 3-adic fields.
- Using resultants, we produce a list of degree 12 polynomials.
- Panayi's p-adic root-finding algorithm is used to discard isomorphic extensions.
- We get 785 degree 12 extensions of \mathbf{Q}_3 .

- We use Amano's methods for determining cubic extensions of the quartic 3-adic fields.
- Using resultants, we produce a list of degree 12 polynomials.
- Panayi's p-adic root-finding algorithm is used to discard isomorphic extensions.
- We get 785 degree 12 extensions of \mathbf{Q}_3 .
- Krasner's mass formula proves that these are all such extensions.

- We use Amano's methods for determining cubic extensions of the quartic 3-adic fields.
- Using resultants, we produce a list of degree 12 polynomials.
- Panayi's p-adic root-finding algorithm is used to discard isomorphic extensions.
- We get 785 degree 12 extensions of \mathbf{Q}_3 .
- Krasner's mass formula proves that these are all such extensions.

$$\operatorname{mass}(K/\mathbf{Q}_3) = \frac{12}{|\operatorname{Aut}(K/\mathbf{Q}_3)|}$$

• We follow the standard approach for determining Galois groups.

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.
- The strategy:

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.
- The strategy:
 - Divide the list of 45 groups into smaller pieces that are easily distinguished from each other.

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.
- The strategy:
 - Divide the list of 45 groups into smaller pieces that are easily distinguished from each other.
 - First, use centralizer order.

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.
- The strategy:
 - Divide the list of 45 groups into smaller pieces that are easily distinguished from each other.
 - First, use centralizer order.

$$|C_{S_{12}}(G)| = |\operatorname{Aut}(K/\mathbf{Q}_3)|$$

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.
- The strategy:
 - Divide the list of 45 groups into smaller pieces that are easily distinguished from each other.
 - First, use centralizer order.

$$|C_{S_{12}}(G)| = |\operatorname{Aut}(K/\mathbf{Q}_3)|$$

• Next use Galois groups of subfields and parity.

- We follow the standard approach for determining Galois groups.
- Compute enough group-theoretic and field-theoretic invariants so as to uniquely identify a polynomial with its corresponding Galois group.
- The strategy:
 - Divide the list of 45 groups into smaller pieces that are easily distinguished from each other.
 - First, use centralizer order.

$$|C_{S_{12}}(G)| = |\operatorname{Aut}(K/\mathbf{Q}_3)|$$

- Next use Galois groups of subfields and parity.
- When this information is not enough, introduce various resolvent polynomials.

\mathbf{T}	$ \mathbf{C_{S_{12}}}(\mathbf{G}) $	subfields	$\#\mathbf{Q}_3^{12}$
1	12	2T1,3T1,4T1,6T1	8
2	12	2T1,2T1,2T1,3T1,4T2,6T1,6T1,6T1	4
3	12	2T1,2T1,2T1,3T2,4T2,6T2,6T3,6T3	6
5	12	2T1,3T2,4T1,6T2	2

Centralizer Order 4 or 6

\mathbf{T}	$ \mathbf{C_{S_{12}}(G)} $	subfields	$\#\mathbf{Q}_{3}^{12}$
11	4	2T1, 3T2, 4T1, 6T3	10
14	6	2T1, 3T1, 4T3, 6T1	8
15	6	2T1, 3T2, 4T3, 6T2	5
16	6	2T1, 2T1, 2T1, 4T2, 6T9	9
17	6	2T1, 4T1, 6T10	4
18	6	2T1, 2T1, 2T1, 4T2, 6T5	24
19	6	2T1, 4T1, 6T5	8
35	6	2T1, 4T3, 6T13	8
42	6	2T1, 4T3, 6T5	40

• Nine groups have centralizer order equal to three.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.
 - Then $f_{66}(x) = g(\sqrt{x})$.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.
 - Then $f_{66}(x) = g(\sqrt{x})$.
 - Equivalently, let r_1, \ldots, r_{12} be the roots of f.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.
 - Then $f_{66}(x) = g(\sqrt{x})$.
 - Equivalently, let r_1, \ldots, r_{12} be the roots of f.

$$f_{66}(x) = \prod_{i=1}^{11} \prod_{j=i+1}^{12} (x - r_i - r_j)$$

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.
 - Then $f_{66}(x) = g(\sqrt{x})$.
 - Equivalently, let r_1, \ldots, r_{12} be the roots of f.

$$f_{66}(x) = \prod_{i=1}^{11} \prod_{j=i+1}^{12} (x - r_i - r_j)$$

• Factor f_{66} over \mathbf{Q}_3 , and consider degree 18 factors.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.
 - Then $f_{66}(x) = g(\sqrt{x})$.
 - Equivalently, let r_1, \ldots, r_{12} be the roots of f.

$$f_{66}(x) = \prod_{i=1}^{11} \prod_{j=i+1}^{12} (x - r_i - r_j)$$

- Factor f_{66} over \mathbf{Q}_3 , and consider degree 18 factors.
- Compute Galois groups of polynomials defining cubic subfields.

- Nine groups have centralizer order equal to three.
- Galois groups of subfields are not enough.
- We use the following degree 66 absolute resolvent $f_{66}(x)$,
 - Let $g(x) = \text{Resultant}_y(f(y), f(x+y))/x^{12}$.
 - Then $f_{66}(x) = g(\sqrt{x})$.
 - Equivalently, let r_1, \ldots, r_{12} be the roots of f.

$$f_{66}(x) = \prod_{i=1}^{11} \prod_{j=i+1}^{12} (x - r_i - r_j)$$

- Factor f_{66} over \mathbf{Q}_3 , and consider degree 18 factors.
- Compute Galois groups of polynomials defining cubic subfields.
- In the next table, we call this column Cubic Subs.

\mathbf{T}	subfields	f_{66}	Cubic Subs	$\#\mathbf{Q}_3^{12}$
70	2T1, 2T1, 2T1, 4T2	[12,18,18,18]	3T1, 3T2, 3T2	36
71	2T1, 2T1, 2T1, 4T2	[12,18,18,18]	3T2, 3T2, 3T2	4
130	2T1, 2T1, 2T1, 4T2	[12,18,18,18]	none	32
72	2T1, 4T1	[12,18,36]	3Т2	4
73	2T1, 4T1	[12,18,36]	3T1	16
131	2T1, 4T1	[12,18,36]	none	32
116	2T1, 4T3	[12,18,36]	3Т2	20
121	2T1, 4T3	[12,18,36]	3T1	32
167	2T1, 4T3	[12,18,36]	none	160

• Eight groups have centralizer order equal to 2.

- Eight groups have centralizer order equal to 2.
- All but the groups 12T12 and 12T13 can be distinguished by their subfield content.

- Eight groups have centralizer order equal to 2.
- All but the groups 12T12 and 12T13 can be distinguished by their subfield content.
- For these two groups, their corresponding fields each have a unique cubic and quartic subfield.

- Eight groups have centralizer order equal to 2.
- All but the groups 12T12 and 12T13 can be distinguished by their subfield content.
- For these two groups, their corresponding fields each have a unique cubic and quartic subfield.
- If the Galois group is 12T12, the discriminant of the cubic subfield times the discriminant of the quartic subfield is a not a square.

- Eight groups have centralizer order equal to 2.
- All but the groups 12T12 and 12T13 can be distinguished by their subfield content.
- For these two groups, their corresponding fields each have a unique cubic and quartic subfield.
- If the Galois group is 12T12, the discriminant of the cubic subfield times the discriminant of the quartic subfield is a not a square.
- For the group 12T13, this quantity is a square.

- Eight groups have centralizer order equal to 2.
- All but the groups 12T12 and 12T13 can be distinguished by their subfield content.
- For these two groups, their corresponding fields each have a unique cubic and quartic subfield.
- If the Galois group is 12T12, the discriminant of the cubic subfield times the discriminant of the quartic subfield is a not a square.
- For the group 12T13, this quantity is a square.
- See column $\mathbf{d_3} \cdot \mathbf{d_4} = \square$.

Т	subfields	$\mathbf{d_3}\cdot\mathbf{d_4}=\square$	$\#\mathbf{Q}_{3}^{12}$
12	2T1, 3T2, 4T3, 6T3	no	2
13	2T1, 3T2, 4T3, 6T3	yes	5
34	2T1, 2T1, 2T1, 4T2, 6T13		8
36	2T1, 4T3, 6T13		8
38	2T1, 4T3, 6T9		10
39	2T1, 4T1, 6T9		8
40	2T1,2T1,2T1,4T2,6T10		4
41	2T1, 4T1, 6T10		4

• 15 groups have centralizer order equal to 1.

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.
- We divide the 15 candidates into three sets:

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.
- We divide the 15 candidates into three sets:
 - those with two subfields and where $G \subseteq A_{12}$

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.
- We divide the 15 candidates into three sets:
 - those with two subfields and where $G \subseteq A_{12}$
 - those with two subfields and where $G \nsubseteq A_{12}$

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.
- We divide the 15 candidates into three sets:
 - those with two subfields and where $G \subseteq A_{12}$
 - those with two subfields and where $G \nsubseteq A_{12}$
 - those with four subfields.

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.
- We divide the 15 candidates into three sets:
 - those with two subfields and where $G \subseteq A_{12}$
 - those with two subfields and where $G \nsubseteq A_{12}$
 - those with four subfields.
- There are six groups in the first set.

- 15 groups have centralizer order equal to 1.
- Corresponding fields have either two or four proper nontrivial subfields.
- We divide the 15 candidates into three sets:
 - those with two subfields and where $G \subseteq A_{12}$
 - those with two subfields and where $G \not\subseteq A_{12}$
 - those with four subfields.
- There are six groups in the first set.
- We use two resolvents, f_{220} and f_8 .

• Let f(x) define a degree 12 extension over \mathbf{Q}_3 .

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

$$f_{220}(x) = \prod_{i=1}^{10} \prod_{j=i+1}^{11} \prod_{k=j+1}^{12} (x - r_i - r_j - r_k)$$

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

$$f_{220}(x) = \prod_{i=1}^{10} \prod_{j=i+1}^{11} \prod_{k=j+1}^{12} (x - r_i - r_j - r_k)$$

• The other resolvent makes use of the unique quartic subfield.

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

$$f_{220}(x) = \prod_{i=1}^{10} \prod_{j=i+1}^{11} \prod_{k=j+1}^{12} (x - r_i - r_j - r_k)$$

- The other resolvent makes use of the unique quartic subfield.
 - Let L be the unique quartic subfield of K.

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

$$f_{220}(x) = \prod_{i=1}^{10} \prod_{j=i+1}^{11} \prod_{k=j+1}^{12} (x - r_i - r_j - r_k)$$

- The other resolvent makes use of the unique quartic subfield.
 - Let L be the unique quartic subfield of K.
 - Let g be a cubic polynomial obtained by factoring f over L.

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

$$f_{220}(x) = \prod_{i=1}^{10} \prod_{j=i+1}^{11} \prod_{k=j+1}^{12} (x - r_i - r_j - r_k)$$

- The other resolvent makes use of the unique quartic subfield.
 - Let L be the unique quartic subfield of K.
 - Let g be a cubic polynomial obtained by factoring f over L.
 - Let $f_8(x)$ be the norm of $x^2 \operatorname{disc}(g(x))$ from L down to \mathbf{Q}_3 .

- Let f(x) define a degree 12 extension over \mathbf{Q}_3 .
- Let r_1, \ldots, r_{12} be its roots.

$$f_{220}(x) = \prod_{i=1}^{10} \prod_{j=i+1}^{11} \prod_{k=j+1}^{12} (x - r_i - r_j - r_k)$$

- The other resolvent makes use of the unique quartic subfield.
 - Let L be the unique quartic subfield of K.
 - Let g be a cubic polynomial obtained by factoring f over L.
 - Let $f_8(x)$ be the norm of $x^2 \operatorname{disc}(g(x))$ from L down to \mathbf{Q}_3 .
 - Compute the Galois group of $f_8(x)$ over \mathbf{Q}_3 , (easy since it defines a tamely ramified extension).

Т	subfields	f_{220}	f_8	$\#\mathbf{Q}_{3}^{12}$
46	2T1, 4T1	[4,36,36,36,36,72]	8T1	4
173	2T1, 4T1	[4,36,36,36,108]	8T1	16
215	2T1, 4T1	[4,36,36,36,108]	8T7	20
84	2T1, 4T3	[4,36,36,72,72]	8T8	16
212	2T1, 4T3	[4,36,72,108]	8T8	48
216	2T1, 4T3	[4,36,72,108]	8T6	16

• The second set has five groups.

- The second set has five groups.
- We make use of f_{66} , from before.

- The second set has five groups.
- We make use of f_{66} , from before.
- Factor f_{66} over \mathbf{Q}_3 .

- The second set has five groups.
- We make use of f_{66} , from before.
- Factor f_{66} over \mathbf{Q}_3 .
- We get three factors of degrees 12, 18, and 36, respectively.

- The second set has five groups.
- We make use of f_{66} , from before.
- Factor f_{66} over \mathbf{Q}_3 .
- We get three factors of degrees 12, 18, and 36, respectively.
- Consider sextic subfields of the field defined by the degree 18 factor.

- The second set has five groups.
- We make use of f_{66} , from before.
- Factor f_{66} over \mathbf{Q}_3 .
- We get three factors of degrees 12, 18, and 36, respectively.
- Consider sextic subfields of the field defined by the degree 18 factor.
- Compute the Galois groups of the polynomials defining these sextic fields.

- The second set has five groups.
- We make use of f_{66} , from before.
- Factor f_{66} over \mathbf{Q}_3 .
- We get three factors of degrees 12, 18, and 36, respectively.
- Consider sextic subfields of the field defined by the degree 18 factor.
- Compute the Galois groups of the polynomials defining these sextic fields.

Т	subfields	f_{66}	Sextic Subs	$\#\mathbf{Q}_3^{12}$
118	2T1, 4T3	[12,18,36]	6T3	8
120	2T1, 4T3	[12,18,36]	6T13	20
169	2T1, 4T3	[12,18,36]	6T9	40
119	2T1, 4T1	[12,18,36]	6T3	20
170	2T1, 4T1	[12,18,36]	6T9	32

• There are four groups in the third and final set.

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,
 - Factor f_{66} over \mathbf{Q}_3 .

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,
 - Factor f_{66} over \mathbf{Q}_3 .
 - We get four factors of degrees 12, 18, 18, and 18, respectively.

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,
 - Factor f_{66} over \mathbf{Q}_3 .
 - We get four factors of degrees 12, 18, 18, and 18, respectively.
 - Consider again sextic subfields of the fields defined by the degree 18 factors.

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,
 - Factor f_{66} over \mathbf{Q}_3 .
 - We get four factors of degrees 12, 18, 18, and 18, respectively.
 - Consider again sextic subfields of the fields defined by the degree 18 factors.
 - Compute Galois groups of the polynomials defining these sextic subfields.

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,
 - Factor f_{66} over \mathbf{Q}_3 .
 - We get four factors of degrees 12, 18, 18, and 18, respectively.
 - Consider again sextic subfields of the fields defined by the degree 18 factors.
 - Compute Galois groups of the polynomials defining these sextic subfields.
 - This distinguishes two groups.

- There are four groups in the third and final set.
- We use f_{66} and f_{220} from before.
- First,
 - Factor f_{66} over \mathbf{Q}_3 .
 - We get four factors of degrees 12, 18, 18, and 18, respectively.
 - Consider again sextic subfields of the fields defined by the degree 18 factors.
 - Compute Galois groups of the polynomials defining these sextic subfields.
 - This distinguishes two groups.
- For other two groups, use the list of degrees of the irreducible factors of f_{220} .

\mathbf{T}	f ₆₆	f ₂₂₀	Sextic Subs	$\#\mathbf{Q}_3^{12}$
47	[12,18,18,18]	[4,36,36,36,36,72]	none	4
171	[12,18,18,18]	[4,36,36,36,108]	$6T10,\!6T10$	8
172	[12,18,18,18]	[4,36,36,36,108]	6T13,6T13,6T13,6T13	6
174	[12,18,18,18]	[4,36,36,36,108]	none	6

THANK YOU!