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Motivation #1

Theorem

Let n be a positive integer and p a prime number. There are
only finitely many extensions of Qp of degree n.

Obvious question: How many are there?

In certain cases, we know the answer.

Unramified extensions of degree n: only one.

Quadratic extensions:

7 if p = 2; 3 otherwise

Tamely ramified extensions (i.e. p - n):

let n = ef g = gcd(pf − 1, e)
partition Z/gZ into orbits under multiplication by p
#orbits = #extensions
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How many?

What about wildly ramified extensions (p | n)?

Degree p extensions of Qp: p2 + 1

What if p | n and n is composite?

No general formula is known.

Jones/Roberts have pursued some low-degree cases.

For example,

(p,n) (2,4) (2,6) (3,6) (2,8) (3,9) (2,10) (5,10)

# 59 47 75 1834 795 158 258
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Motivation #2

Let K/Q be defined by some monic irreducible f(x) ∈ Z[x].

Factor f over Qp to obtain K’s associated p-adic algebra,

K ⊗Qp '
m∏
j=1

Kj

each Kj is a finite extension of Qp, defined by the
corresponding irreducible factor of f .

To study K, we can determine arithmetic invariants of the
Kj , such as

discriminant
ramification index
residue degree
subfields
Galois group
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This Talk

In this talk, we’ll discuss a technique for determining

the number of degree 12 extensions of Q3

the Galois group of the normal closure of each extension

Here’s the strategy
1. Use ramification groups to

- show each such extension has a unique quartic subfield
- narrow down the list of possible Galois groups

2. Compute a defining polynomial (which gives the number of
extensions)

3. Compute the Galois group of each polynomial over Q3

Item 2. can be done using the methods of Pauli/Roblot.
Our method is a slight variation, and computationally less
expensive.

Item 3. uses a mix of absolute/relative resolvents and
subfield invariants.
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Ramification Groups

Suppose [K : Q3] = 12.

Let G = Gal(Kgal/Q3).

Higher ramification group theory gives:

G is a solvable transitive subgroup of S12 (there are 265).
G contains a solvable normal subgroup G0 such that G/G0

is cyclic of order dividing 12.
G0 contains a normal subgroup G1 such that G1 is a
3-group (possibly trivial).
G0/G1 is cyclic of order dividing 3[G:G0] − 1.

Only 45 of the 265 groups pass the test.
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Possible Galois Groups

Using notation in Gap, these groups are
TransitiveGroup(12,n), where n is one of:

1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35,
36, 38, 39, 40, 41, 42, 46, 47, 70, 71, 72, 73, 84, 116,
118, 119, 120, 121, 130, 131, 167, 169, 170, 171, 172,
173, 174, 212, 215, 216

Note:
TransitiveGroup(12,1) = C12.
TransitiveGroup(12,301) = S12.
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Unique Quartic Subfield

Claim: K/Q3 has a unique quartic subfield.

Proof: Let G = Gal(Kgal/Q3).

Let E ⊆ G be the subgroup that fixes K.

The non-isomorphic subfields of K correspond to conjugacy
classes of intermediate subgroups F such that E ⊆ F ⊆ G.

Specifically,

Let L be a subfield of K.
Let F be its corresponding intermediate group,
Let G act on the cosets of F .
The permutation representation of this action is the Galois
group of Lgal/Q3. (We’ll use this later)!

Direct computation shows all 45 groups have a unique such
intermediate group F of index 4.

Thus all extensions K have a unique quartic subfield.
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Defining Polynomials

Corollary: Every degree 12 extension of Q3 can be
realized uniquely as a cubic extension of a quartic 3-adic
field.

Defining polynomials can therefore be computed by
evaluating appropriate resultants.

Quartic 3-adic fields are tamely ramified, therefore easily
classified.

e f poly

1 4 x4 − x + 2

2 2 x4 + 9x2 + 36

2 2 x4 − 3x2 + 18

4 1 x4 + 3

4 1 x4 − 3
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Ramification Groups

We use Amano’s methods for determining cubic extensions
of the quartic 3-adic fields.

Using resultants, we produce a list of degree 12
polynomials.

Panayi’s p-adic root-finding algorithm is used to discard
isomorphic extensions.

We get 785 degree 12 extensions of Q3.

Krasner’s mass formula proves that these are all such
extensions.

mass(K/Q3) =
12

|Aut(K/Q3)|



Ramification Groups

We use Amano’s methods for determining cubic extensions
of the quartic 3-adic fields.

Using resultants, we produce a list of degree 12
polynomials.

Panayi’s p-adic root-finding algorithm is used to discard
isomorphic extensions.

We get 785 degree 12 extensions of Q3.

Krasner’s mass formula proves that these are all such
extensions.

mass(K/Q3) =
12

|Aut(K/Q3)|



Ramification Groups

We use Amano’s methods for determining cubic extensions
of the quartic 3-adic fields.

Using resultants, we produce a list of degree 12
polynomials.

Panayi’s p-adic root-finding algorithm is used to discard
isomorphic extensions.

We get 785 degree 12 extensions of Q3.

Krasner’s mass formula proves that these are all such
extensions.

mass(K/Q3) =
12

|Aut(K/Q3)|



Ramification Groups

We use Amano’s methods for determining cubic extensions
of the quartic 3-adic fields.

Using resultants, we produce a list of degree 12
polynomials.

Panayi’s p-adic root-finding algorithm is used to discard
isomorphic extensions.

We get 785 degree 12 extensions of Q3.

Krasner’s mass formula proves that these are all such
extensions.

mass(K/Q3) =
12

|Aut(K/Q3)|



Ramification Groups

We use Amano’s methods for determining cubic extensions
of the quartic 3-adic fields.

Using resultants, we produce a list of degree 12
polynomials.

Panayi’s p-adic root-finding algorithm is used to discard
isomorphic extensions.

We get 785 degree 12 extensions of Q3.

Krasner’s mass formula proves that these are all such
extensions.

mass(K/Q3) =
12

|Aut(K/Q3)|



Ramification Groups

We use Amano’s methods for determining cubic extensions
of the quartic 3-adic fields.

Using resultants, we produce a list of degree 12
polynomials.

Panayi’s p-adic root-finding algorithm is used to discard
isomorphic extensions.

We get 785 degree 12 extensions of Q3.

Krasner’s mass formula proves that these are all such
extensions.

mass(K/Q3) =
12

|Aut(K/Q3)|



Distinguishing Galois Groups

We follow the standard approach for determining Galois
groups.

Compute enough group-theoretic and field-theoretic
invariants so as to uniquely identify a polynomial with its
corresponding Galois group.

The strategy:

Divide the list of 45 groups into smaller pieces that are
easily distinguished from each other.
First, use centralizer order.

|CS12
(G)| = |Aut(K/Q3)|

Next use Galois groups of subfields and parity.
When this information is not enough, introduce various
resolvent polynomials.
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Centralizer Order 12

T |CS12(G)| subfields #Q12
3

1 12 2T1,3T1,4T1,6T1 8

2 12 2T1,2T1,2T1,3T1,4T2,6T1,6T1,6T1 4

3 12 2T1,2T1,2T1,3T2,4T2,6T2,6T3,6T3 6

5 12 2T1,3T2,4T1,6T2 2



Centralizer Order 4 or 6

T |CS12(G)| subfields #Q12
3

11 4 2T1, 3T2, 4T1, 6T3 10

14 6 2T1, 3T1, 4T3, 6T1 8

15 6 2T1, 3T2, 4T3, 6T2 5

16 6 2T1, 2T1, 2T1, 4T2, 6T9 9

17 6 2T1, 4T1, 6T10 4

18 6 2T1, 2T1, 2T1, 4T2, 6T5 24

19 6 2T1, 4T1, 6T5 8

35 6 2T1, 4T3, 6T13 8

42 6 2T1, 4T3, 6T5 40



Centralizer Order 3

Nine groups have centralizer order equal to three.

Galois groups of subfields are not enough.

We use the following degree 66 absolute resolvent f66(x),

Let g(x) = Resultanty(f(y), f(x + y))/x12.
Then f66(x) = g(

√
x).

Equivalently, let r1, . . . , r12 be the roots of f .

f66(x) =

11∏
i=1

12∏
j=i+1

(x− ri − rj)

Factor f66 over Q3, and consider degree 18 factors.
Compute Galois groups of polynomials defining cubic
subfields.
In the next table, we call this column Cubic Subs.
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Centralizer Order 3

T subfields f66 Cubic Subs #Q12
3

70 2T1, 2T1, 2T1, 4T2 [12,18,18,18] 3T1, 3T2, 3T2 36

71 2T1, 2T1, 2T1, 4T2 [12,18,18,18] 3T2, 3T2, 3T2 4

130 2T1, 2T1, 2T1, 4T2 [12,18,18,18] none 32

72 2T1, 4T1 [12,18,36] 3T2 4

73 2T1, 4T1 [12,18,36] 3T1 16

131 2T1, 4T1 [12,18,36] none 32

116 2T1, 4T3 [12,18,36] 3T2 20

121 2T1, 4T3 [12,18,36] 3T1 32

167 2T1, 4T3 [12,18,36] none 160



Centralizer Order 2

Eight groups have centralizer order equal to 2.

All but the groups 12T12 and 12T13 can be distinguished
by their subfield content.

For these two groups, their corresponding fields each have a
unique cubic and quartic subfield.

If the Galois group is 12T12, the discriminant of the cubic
subfield times the discriminant of the quartic subfield is a
not a square.

For the group 12T13, this quantity is a square.

See column d3 · d4 = �.
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Centralizer Order 2

T subfields d3 · d4 = � #Q12
3

12 2T1, 3T2, 4T3, 6T3 no 2

13 2T1, 3T2, 4T3, 6T3 yes 5

34 2T1, 2T1, 2T1, 4T2, 6T13 8

36 2T1, 4T3, 6T13 8

38 2T1, 4T3, 6T9 10

39 2T1, 4T1, 6T9 8

40 2T1, 2T1, 2T1, 4T2, 6T10 4

41 2T1, 4T1, 6T10 4



Centralizer Order 1

15 groups have centralizer order equal to 1.

Corresponding fields have either two or four proper
nontrivial subfields.

We divide the 15 candidates into three sets:

those with two subfields and where G ⊆ A12

those with two subfields and where G * A12

those with four subfields.

There are six groups in the first set.

We use two resolvents, f220 and f8.
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Centralizer Order 1

Let f(x) define a degree 12 extension over Q3.

Let r1, . . . , r12 be its roots.

f220(x) =
10∏
i=1

11∏
j=i+1

12∏
k=j+1

(x− ri − rj − rk)

The other resolvent makes use of the unique quartic
subfield.

Let L be the unique quartic subfield of K.
Let g be a cubic polynomial obtained by factoring f over L.
Let f8(x) be the norm of x2 − disc(g(x)) from L down to
Q3.
Compute the Galois group of f8(x) over Q3, (easy since it
defines a tamely ramified extension).
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Centralizer Order 1

T subfields f220 f8 #Q12
3

46 2T1, 4T1 [4,36,36,36,36,72] 8T1 4

173 2T1, 4T1 [4,36,36,36,108] 8T1 16

215 2T1, 4T1 [4,36,36,36,108] 8T7 20

84 2T1, 4T3 [4,36,36,72,72] 8T8 16

212 2T1, 4T3 [4,36,72,108] 8T8 48

216 2T1, 4T3 [4,36,72,108] 8T6 16



Centralizer Order 1

The second set has five groups.

We make use of f66, from before.

Factor f66 over Q3.

We get three factors of degrees 12, 18, and 36, respectively.

Consider sextic subfields of the field defined by the degree
18 factor.

Compute the Galois groups of the polynomials defining
these sextic fields.
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Centralizer Order 1

T subfields f66 Sextic Subs #Q12
3

118 2T1, 4T3 [12,18,36] 6T3 8

120 2T1, 4T3 [12,18,36] 6T13 20

169 2T1, 4T3 [12,18,36] 6T9 40

119 2T1, 4T1 [12,18,36] 6T3 20

170 2T1, 4T1 [12,18,36] 6T9 32



Centralizer Order 1

There are four groups in the third and final set.

We use f66 and f220 from before.

First,

Factor f66 over Q3.
We get four factors of degrees 12, 18, 18, and 18,
respectively.
Consider again sextic subfields of the fields defined by the
degree 18 factors.
Compute Galois groups of the polynomials defining these
sextic subfields.
This distinguishes two groups.

For other two groups, use the list of degrees of the
irreducible factors of f220.
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Centralizer Order 1

T f66 f220 Sextic Subs #Q12
3

47 [12,18,18,18] [4,36,36,36,36,72] none 4

171 [12,18,18,18] [4,36,36,36,108] 6T10,6T10 8

172 [12,18,18,18] [4,36,36,36,108] 6T13,6T13,6T13,6T13 6

174 [12,18,18,18] [4,36,36,36,108] none 6



Thank You

THANK YOU!


