Ternary Quadratic Forms and Half-Integral Weight Modular Forms

Alia Hamieh

University of British Columbia

PANTS 17, Dec. 3, 2011

Outline

- 2 Shimura's Correspondence
- 3 Waldspurger's Theorem
- 4 A Modular Form of Weight $\frac{k}{2}$
- 5 On The Result of Waldspurger

6 Example

Half-Integer Weight Modular Forms

In order to define a modular form of half-integeral weight $\frac{k}{2}$ for a congruence subgroup Γ' one would consider a holomorphic function f on \mathbb{H} satisfying $f(\gamma z) = (cz+d)^{\frac{k}{2}}f(z)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma'$.

However, $J(\gamma,z)=(cz+d)^{\frac{k}{2}}$ is not an automorphy factor because it does not satisfy the identity

$$J(\alpha\beta,z)=J(\alpha,\beta z)\times J(\beta,z) \qquad \text{for all } \alpha,\beta\in\Gamma'\text{, }z\in\mathbb{H}$$

The natural way out of this complication is to define the automorphy factor to be the k-th power of

$$j(\gamma, z) = \left(\frac{c}{d}\right) \epsilon_d^{-1} \sqrt{cz+d}$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4)$

where

$$\left(\frac{c}{d}\right) = \begin{cases} -\left(\frac{c}{|d|}\right), & \text{if } c < 0, d < 0, \\\\\\ \left(\frac{c}{|d|}\right), & \text{otherwise.} \end{cases}$$

and

$$\epsilon_d = \begin{cases} 1, & \text{if } d \equiv 1 \pmod{4}; \\ i, & \text{if } d \equiv 3 \pmod{4}. \end{cases}$$

For a congruence subgroup $\Gamma'\in\Gamma_0(4)$ define,

$$f(z)|[\gamma]_{\frac{k}{2}} = j(\gamma, z)^{-k} f(\gamma z)$$

Definition

Let k be an odd integer and let Γ' be a congruence subgroup such that $\Gamma' \subset \Gamma_0(4)$. We say that f(z) is a modular form of weight $\frac{k}{2}$ for Γ' and write $f \in M_{\frac{k}{2}}(\Gamma')$ if:

- f is invariant under $[\gamma]_{\frac{k}{2}}$ for all $\gamma\in\Gamma'$
- $\bullet~f$ is holomorphic as function on the upper half plane $\mathbb H$
- f is holomorphic at every cusp

If f vanishes at every cusp we say that it is a cusp form and write $f\in S_{\frac{k}{2}}(\Gamma')$

Another important definition is that of the space of modular forms with a character χ defined modulo 4N. This is denoted by $M_{\frac{k}{2}}(4N,\chi)$ and defined to be the set

$$\{f \in M_{\frac{k}{2}}(\Gamma_1(4N)) : f | [\gamma]_{\frac{k}{2}} = \chi(d) f \ \forall \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4N) \}$$
$$S_{\frac{k}{2}}(4N, \chi) = M_{\frac{k}{2}}(4N, \chi) \cap S_{\frac{k}{2}}(\Gamma_1(4N))$$

Moreover,

$$M_{\frac{k}{2}}(\Gamma_1(4N)) = \bigoplus_{\chi} M_{\frac{k}{2}}(4N,\chi)$$

Hecke Operators

۲

٠

Given
$$f = \sum_{n=0}^{\infty} a_n e^{2\pi i n z} \in M_{\frac{k}{2}}(4N, \chi)$$
:

• We can have non-trivial operators T_m only for square m or for $(m, 4N) \neq 1$.

 $T_{p^2}(f)(z) = \sum_{n=0}^{\infty} b_n e^{2\pi i n z}$

where

$$b_n = a_{p^2n} + \chi(p)(\frac{(-1)^{\frac{k-1}{2}}n}{p})p^{\frac{k-3}{2}}a_n + \chi(p^2)p^{k-2}a_{\frac{n}{p^2}}.$$

$$T_p(f)(z) = \sum_{n=0}^{\infty} a_{np} e^{2\pi i n z} \qquad \text{when } p|N.$$

Theorem (Shimura(1973))

Let $k \geq 3$ be an odd integer. Let $f \in S_{\frac{k}{2}}(4N,\chi)$ be a common eigenfunction for all T_{p^2} with λ_p being the corresponding eigenvalue. Define the sequence of complex numbers $\{b_n\}$ by the formal identity

$$\sum_{n=1}^{\infty} b_n n^{-s} = \prod_p \frac{1}{1 - \lambda_p p^{-s} + \chi(p^2) p^{k-2-2s}}$$

Then $g(z) = \sum_{n=1}^{\infty} b_n e^{2\pi i n z}$ belongs to $M_{k-1}(N', \chi^2)$ for some integer N' which is divisible by he conductor of χ^2 . If $k \ge 5$, we get a cusp form.

Given $F\in S^{new}_{k-1}(\chi^2)$ a newform such that $T_pF=b_pF$ for all p, define

$$S_{\frac{k}{2}}(4N,\chi,F) = \{ g \in S_{\frac{k}{2}}(4N,\chi) : T_{p^2}g = b_pg \text{ for almost all } p \not| 4N \}.$$

Shimura proved

$$S_{\frac{k}{2}}(4N,\chi) = \bigoplus_F S_{\frac{k}{2}}(4N,\chi,F)$$

where the sum is over a finite number of newforms F of weight k-1, character χ^2 and level M(F) dividing 2N.

Description of Waldspurger's Result

Waldspurger proved that, under quite general conditions on F, N and χ , there exists a basis for $S_{\frac{k}{2}}(4N, \chi, F)$ such that for every positive integer n the Fourier coefficient $a_n(g_i)$ of a basis element g_i is the product of two factors:

- a product of local terms $c_i(n,F)$ each of which is completely determined by the local components of F and χ according to explicit formulae.
- a global factor $A_F(n)$ whose square is the central critical value of the *L*-function of the newform *F* twisted by a quadratic character depending on n.

- Given a newform $F \in S_{k-1}^{new}(\Gamma_0(N))$ that satisfies $L(F, \frac{k-1}{2}) \neq 0$, we compute a basis for $S_{\frac{k}{2}}(\Gamma_0(4N), F)$ where N is odd square-free integer and $k \equiv 3 \mod 4$.
- In the light of Waldspurger's work, our task is reduced to computing the global factors $A_F(n)$.
- We construct of a half-integral weight modular form $g \in S^+_{\frac{k}{2}}(\Gamma_0(4N),F).$
- We express the globlal factors $A_F(n)$ in terms of the Fourier coefficients of g.

Basic Setup

- For each p|N, $W_pF = w_pF$.
- Let $S=\{q_1,...,q_r\}$ be the set of all prime factors q of N such that $w_q=-1$
- Let B be the definite quaternion algebra over \mathbb{Q} ramified at S and ∞ , and O be an Eichler order of square-free level N in B.
- Let $\bar{C} = \{[I_1], [I_2], ..., [I_H]\}$ be the set of left O-ideal classes and X be the free abelian group over \bar{C}
- There is an action of Hecke operators on the $X(\mathbb{R}) = X \otimes_{\mathbb{Z}} \mathbb{R}$ denoted by t_n .
- $X(\mathbb{R})$ has an orthogonal basis of eigenvectors for $\{t_n\}$.

- For every left O-ideal I_i in C, let O_i be its right order, and let R_i be the subgroup of trace zero elements in the suborder $\mathbb{Z} + 2O_i$.
- The ternary quadratic form N(x) for $x \in R_i$ is a positive definite integral quadratic form with level 4N and a square discriminant.
- \bullet For every left $O\mbox{-ideal class}\ [I_i]\mbox{, we associate the ternary theta series}$

$$g([I_i]) = \frac{1}{2} \sum_{x \in R_i} q^{N(x)} = \frac{1}{2} \sum_{D \ge 0} a_D([I_i]) q^D,$$

then extend this association by linearity to $X(\mathbb{R})$.

- These modular forms have weight $\frac{3}{2}$, level 4N and trivial character
- Computing g([I_i]) up to a precision T amounts to computing the number of times N(x) represents 1, 2, 3, ..., T as x varies over R_i. Therefore, it takes time roughly proportional to T^{3/2}

Proposition

For all $I \in X(\mathbb{R})$ and all $p \not| 4N$ we have

$$T_{p^2}(g(I)) = g(t_p(I)).$$

Hence, if I_F is a non-zero element in the F-isotypical component of $X(\mathbb{R})$, then $g(I_F) \in S^+_{\frac{3}{2}}(\Gamma_0(4N), F)$

Theorem (Bocherer and Schulze-Pillot(1994))

The half-integral weight modular form
$$g = g(I_F) = \sum_{D \ge 1} c_D q^D$$
 is

non-zero if and only if $L(F, 1) \neq 0$. Moreover, if -D < 0 is a fundamental discriminant with $\chi_{-D}(-N) \neq -1$, then

$$D^{\frac{1}{2}}L(F,1)L(F,-D,1) = 2^{\nu+2}c(F)c_D^2,$$

where c(F) is a complex constant depending only on F and $2^{-\nu} = \prod_{q \mid \frac{N}{(N,D)}} \left(1 + \left(\frac{-D}{q}\right) w_q \right)$

Some Notation

Let k, N, M, χ , χ_0 , χ_t and ρ be given as follows:

- $k \geq 3$ written as $2\lambda + 1$
- N positive integer
- χ even Dirichlet character modulo 4N
- χ_0 Dirichlet character defined by $\chi_0(n) = \chi(n) \left(\frac{-1}{n}\right)^{\lambda}$
- χ_t the quadratic character associated with the extension $\mathbb{Q}(\sqrt{t})/\mathbb{Q}$
- ρ irreducible automorphic representation of $GL_2(\mathbb{A})$ associated to F

Let F be a newform in $S_{k-1}^{new}(\chi^2)$ such that $S_{\frac{k}{2}}(L,\chi,F) \neq 0$ for some integer $L \geq 1$.

We also require that one of the following conditions is satisfied:

- The level of ${\cal F}$ is divisible by 16
- The conductor of χ_0 is divisible by 16
- ρ_2 is not supercuspidal

Theorem (Waldspurger(1981))

Given a newform F satisfying the above hypotheses, there exists a complex-valued function A_F on the set of square-free integers, \mathbb{N}^{sq} , such that

$$(A_F(t))^2 = L(F \otimes \chi_0^{-1} \chi_t, \frac{1}{2}) \epsilon(\chi_0^{-1} \chi_t, \frac{1}{2})$$

• $S_{\frac{k}{2}}(4N, F, \chi) = \bigoplus U(E, F, A_F)$; the direct sum being taken over all integers E such that N(F)|E|4N

Given an integer $E \ge 1$ and a prime number p, Waldspurger defined an integer n_p and a set $U_p(v_p(E), F)$ of finitely many functions c_p defined over \mathbb{Q}_p^* . The set $U_p(v_p(E), F)$ is a singleton and $n_p = 0$ for all but finitely many p. For every element $c_E = (c_{E,p}) \in U(E, F) = \prod_{p \ prime} U_p(v_p(E), F)$, define the function $f(c_E, A_F)$ on \mathbb{H} by:

$$f(c_E, A_F) = \sum_{n \ge 1} a_n(c_E, A_F) q^n,$$

where

$$a_n(c_E, A_F) = A_F(n^{sf})n^{\frac{k-2}{4}} \prod_p c_{E,p}(n).$$

Denote by N(F) the integer $\prod_{p} p^{n_p}$, and by $U(E, F, A_F)$ the complex vector space generated by the set $\{f(c_E, A_F)\}_{c_E \in U(E,F)}$.

We apply the theorem of Waldspurger to compute a basis for the space $S_{\frac{k}{2}}(\Gamma_0(4N),F)$ where

$$F = \sum_{n \ge 1} b_n q^n \in S_{k-1}^{new}(\Gamma_0(N))$$

with odd square-free level N, $k \equiv 3 \mod 4$ and $L(F, \frac{k-1}{2}) \neq 0$.

Since F has an odd square-free level and χ_0 is the trivial character modulo 4N, we get

$$n_p = \begin{cases} 2 & \text{if } p = 2\\ 1 & \text{if } p | N\\ 0 & \text{otherwise.} \end{cases}$$

Hence, $N(F)=\prod p^{n_p}=4N.$ Also, $S_{\frac{k}{2}}(\Gamma_0(4N),F)=U(4N,F,A_F).$

Our goal is thus reduced to computing the space $U(4N, F, A_F)$.

For every $p \not\mid N$ set

$$\lambda_p = b_p p^{1-\frac{k}{2}}, \ \ \alpha_p + \alpha_p' = \lambda_p \text{ and } \alpha_p \alpha_p' = 1$$

For every $p \vert N$ set

$$\lambda_p' = b_p p^{1 - \frac{k}{2}}$$

We get,

$$U_p(v_p(4N), F) = \begin{cases} \{c_p^0[\lambda_p]\} & \text{if } p \not| 4N \\ \{c_p^s[\lambda'_p]\} & \text{if } p | N \\ \{c'_2[\alpha_2], c'_2[\alpha'_2]\} & \text{if } p = 2 \text{ and } \alpha_2 \neq \alpha'_2 \\ \{c'_2[\alpha_2], c''_2[\alpha_2]\} & \text{otherwise} \end{cases}$$

The set U(4N, F) consists of

$$\mathbf{c_1} = c'_2[\alpha_2] \prod_{p|N} c^s_p[\lambda'_p] \prod_{\substack{p \neq 2\\ p \not\mid N}} c^0_p[\lambda_p] \text{ and } \mathbf{c_2} = c'_2[\alpha'_2] \prod_{p|N} c^s_p[\lambda'_p] \prod_{\substack{p \neq 2\\ p \not\mid N}} c^0_p[\lambda_p].$$

Hence, a basis for $S_{\frac{k}{2}}(\Gamma_0(4N),F)=U(4N,F,A_F)$ consists of the functions

$$f(\mathbf{c_1}, A_F) = \sum_{n \ge 1} a_n(\mathbf{c_1}, A_F) q^n \text{ and } f(\mathbf{c_2}, A_F) = \sum_{n \ge 1} a_n(\mathbf{c_2}, A_F) q^n$$

with

$$a_n(\mathbf{c}_1, A_F) = A_F(n^{sf}) n^{\frac{k-2}{4}} c'_2[\alpha_2](n) \prod_{p|N} c^s_p[\lambda'_p](n) \prod_{\substack{p \neq 2\\p \not \mid N}} c^0_p[\lambda_p](n)$$

$$a_n(\mathbf{c_2}, A_F) = A_F(n^{sf}) n^{\frac{k-2}{4}} c'_2[\alpha'_2](n) \prod_{p|N} c^s_p[\lambda'_p](n) \prod_{\substack{p \neq 2 \\ p \not\mid N}} c^0_p[\lambda_p](n).$$

Proposition

We have

$$a_n(\mathbf{c_1}, A_F) = a_n(\mathbf{c_2}, A_F),$$

for every positive integer n such that $(-1)^{\lambda}n = -n \equiv 2,3 \mod 4$. Therefore, the form $f(\mathbf{c_1}, A_F) - f(\mathbf{c_2}, A_F)$ belongs to the Kohnen subspace.

Corollary

The half-integral weight modular form g is a non-zero scalar multiple of $f(\mathbf{c_1}, A_F) - f(\mathbf{c_2}, A_F)$.

Theorem (H.)

For a positive square-free integer t satisfying $\left(\frac{\Delta_{-t}}{p}\right) = -p^{\frac{1}{2}}\lambda'_p$ for all p such that p|N and $p\not|\Delta_{-t}$, we have

$$A_F(t) = r2^{\frac{\nu}{2}} |\Delta_{-t}|^{\frac{2-k}{4}} c_{|\Delta_{-t}|}$$

where r is a complex constant depending only on F, and $2^{\frac{\nu}{2}} = \prod_{\substack{p \mid N \\ p \not\mid \Delta - t}} 2^{-\frac{1}{2}}.$

Remark

Let n be a positive integer such that its square-free part which we denote by n' satisfies $\left(\frac{\Delta_{-n'}}{p}\right) = p^{\frac{1}{2}}\lambda'_p$ for some prime p such that p|N and $p \not| \Delta_{-n'}$. For all such n, we have

$$a_n(\mathbf{c_1}, A_F) = a_n(\mathbf{c_2}, A_F) = 0$$

regardless of the value of $A_F(n')$.

Define $K_1(n)$ and $K_2(n)$ by:

$$K_1(n) = c'_2[\alpha_2](n) \prod_{p|N} c^s_p[\lambda'_p](n) \prod_{\substack{p \neq 2\\ p \not\mid N}} c^0_p[\lambda_p](n)$$

$$K_2(n) = c'_2[\alpha'_2](n) \prod_{p|N} c^s_p[\lambda'_p](n) \prod_{\substack{p \neq 2\\ p \not\mid N}} c^0_p[\lambda_p](n)$$

Theorem (H.)

Let F be a newform in $S_{k-1}^{new}(\Gamma_0(N))$ with odd square-free level N such that $k \equiv 3 \mod 4$ and $L(F, \frac{k-1}{2}) \neq 0$. The space $S_{\frac{k}{2}}(\Gamma_0(4N), F)$ is generated by $f(\mathbf{c_1}, A_F) = \sum_{n \geq 1} a_n(\mathbf{c_1}, A_F)q^n$ and $f(\mathbf{c_2}, A_F) = \sum_{n \geq 1} a_n(\mathbf{c_2}, A_F)q^n$ where

$$a_n(\mathbf{c_1}, A_F) = \begin{cases} 2^{\frac{\nu}{2}} c_{\mid \Delta_{-n'} \mid} \mid \Delta_{-n'} \mid \frac{2-k}{4} n^{\frac{k-2}{4}} K_1(n) & \text{if } \left(\frac{\Delta_{-n'}}{p}\right) = -p^{\frac{1}{2}} \lambda'_p \; \forall p \mid N: \; p \; \not| \Delta_{-n'} \\ 0 & \text{otherwise} \end{cases}$$

$$a_n(\mathbf{c_2}, A_F) = \begin{cases} 2^{\frac{\nu}{2}} c_{|\Delta_{-n'}|} |\Delta_{-n'}|^{\frac{2-k}{4}} n^{\frac{k-2}{4}} K_2(n) & \text{if } \left(\frac{\Delta_{-n'}}{p}\right) = -p^{\frac{1}{2}} \lambda'_p \; \forall p | N: \; p \; \not| \Delta_{-n'} \\ 0 & \text{otherwise} \end{cases}$$

The terms
$$c_{|\Delta_{-n'}|}$$
 are determined by the Fourier expansion $g = \sum_{n \ge 1} c_n q^n$.

Example

Let F be the newform in $S_2^{new}(\Gamma_0(15))$ corresponding to the elliptic curve

$$y^2 + xy + y = x^3 + x^2 - 10x - 10.$$

We have

$$F = \sum_{n \ge 1} b_n q^n = q - q^2 - q^3 - q^4 + q^5 + q^6 + 3q^8 + q^9 - q^{10} - 4q^{11} + O(q^{12}).$$

The space $S_{\frac{3}{2}}(\Gamma_0(60),F)$ is generated by the forms g and h, where

$$g = q^3 - 2q^8 - q^{15} + 2q^{20} + 2q^{23} + O(q^{24})$$

$$h = -4q^2 + q^3 + 4q^5 + 2q^8 - 4q^{12} + 3q^{15} + 4q^{18} - 2q^{20} - 6q^{23} + O(q^{24})$$