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Let
H={x+iy:y >0}

be the upper half-plane. It is a symmetric
space. The group G = SL>(R) acts by Mdbius
transformations

(a b) az —I— b
. cz+d
The measure % is invariant under G. The

Laplacian is theysecond order differential oper-
ator given by

2 32

It is positive-definite and commutes with the
action of G:; any other differential operator
which commutes with the G-action is a poly-

nomial in A.



Spectral analysis on H.

Let Ws(2) = yKs(2my)e?™, s € C. This is
an eigenfunction for A with eigenvalue % — s.
Similarly, Ws(rz), r > 0.

Any f € CS°(H) can be expanded as

1 oo 00 dr
F) = o= [ [ Wi )sWie(r)t sinh e dt =

(corresponding to G = NAK) or, as
o0
o)=Y /O (f, UMU™(2)t tanh wt dt
meZ

U™ - given in terms of Legendre function (cor-
responding to G = KAK; especially useful for
K-invariant f's, i.e. those depending on p(z,1i),
where p is the hyperbolic distance).

The subgroup ' = SL»(Z) is discrete in G with
vol(M\G) < oo, i.e. it is a lattice.



Eisenstein series

y*ts

E(z;s) = >

2s+1
(m.m)=1 Imz + n s+

— Z y(yz)s_l_% z €'H
Moo\l

where Mo = {((1) ’ff) ‘n € 7Z}.

Sometimes it is also convenient to use the nor-
malized Eisenstein series

E*(z;8) =C*(2s+ 1)E(z; s)

— 71-—(8+%)|—(5_|_1) Z
2" (mn)ez2\(0,0) Mz +n

(by pulling out gcd(m,n)) where
C*(s) = 72T (5/2)¢(s) = ¢*(1 = 5)

y*t3
|28—|—1




Properties

1. converges for Res > %

2. E(vz;s) = E(z;s) forall yeT.
3. AE(;8) = (3 —s2)E(;s)

4. Analytic continuation to s € C (except for
a simple pole at s = £3) and a functional
equation

E*(z; —s) = E*(z; s)
5. The residue at s = 5 is identically 1.
6. The Fourier expansion at the cusp

1 - |
Z af?“(y73)(: /O E*($+iy; S>e—27r|rx dX)eerX

rez



IS given by

ar(y,s) = 4|r|° o_os(|rDVyKs2m|r|y) r#0
ap(y,s) =2¢"(2s + 1)y5 T3 4+ 2¢*(1 — 28)y 513

where
oir(n) = Zdt
d|n
is the divisor function and

1 oo ~1 dt
= — _y(t_l_t )/2 S —
Ks(y) 2/0 € t P K_s(y)

iIs the K-Bessel function

We can write the Eisenstein series an Epstein
zeta function

1
B'zs—2)= Y Qumn)’
(m,n)€Z?\{0,0}
w.r.t. the binary quadratic form Q.(x1,x>) =
|21 + 2o?



The holomorphy of E(z;s) for Re(s) = 0 and
the formula for the first Fourier coefficient al-
ready imply that {(14it) =0 for all t € R, i.e.
the Prime Number Theorem!

Special values:

1
(. — NS % -
E (I,S) =2 CQ(\/_—l)(S‘F 2)
More generally, let z € 'H be a CM point of
discriminant d < O, i.e
az2—|—bz—|—c=0, a,b,cGZ,b2—4ac=d

Assume that d is fundamental, that is d is
square-free except for 4. Then Iz corresponds
to the ideal class a of (a, (b++/d)/2) in the ring
of integers of Q(\/E) and

E*(z8) = ()~ G+ (s 4 - S)als + >

V0l
Thus,

> B (e (=) = o\l (s + )

ZE/\d



where A, is the set of '-orbits of CM points of
discriminant d and x is an ideal class character.

Bernstein's proof of the analytic continuation
of Eisenstein series

Lemma 1. For Re(s) > % E(z;s) is the unique
automorphic form F satisfying

1. A(F) = (2 - 2)F

s+3 —s+3
2. Fp =y "2 4+ xy 2 for some constant x
where Fi(y) = fol F(x 4+ iy) dx. Alterna-
tively,

d 1 1 1
yd—y(FU —y*12) = (—s+ 5)(FU —y5T2).

Proof. Consider f = F — E(z;s). Then f; =

*y_s—l_% and therefore f is square-integrable.
Since A is positive-definite, this implies that
3 — 52 > 0, which contradicts the assumption
that Re(s) > 5. ]



General principle: Suppose that S is a con-
nected complex manifold and V a topological
vector space. Let = = =(s)4cg be a family
of systems of linear equations in V depending
holomorphically on S. That is, there exist ana-
lytic functions ¢; : S —Cand p; : S — V', iel
such that the system =(s) has the form

(1i(s),v) = ¢i(s).

Denote by Sol(=(s)) the set of solutions of the
system =(s) in V. Suppose that for some open
U C S (in the complex topology) the system
=(s) has a unique solution v(s) € V. Suppose
further that = is of locally finite type, i.e., for
every s € S there exists a neighborhood W, a
finite-dimensional vector space L and an ana-
lytic family of linear maps A(s) : L — V such
that Sol(=(s)) Cc ImA(s) for all s € W. Then
=(s) has a unique solution v(s) on a dense
open subset of S and v(s) extends to a mero-
morphic function on S.



Proof. Let Sp be the set of points s € S for
which there exists a neighborhood on which
=(s) has a unique solution. We will show that
So is open and that v(s) is meromorphic on Sj.
By connectedness, this will imply the state-
ment. Now, let s € Sy and W, L, X as above.
We show that W (or alternatively, a dense open
subset of W) is contained in Sg. Upon passing
to a subspace of L, we may assume that \(s)
iIs monomorphic for all s € W. The system
=(s) induces a system ='(s) on L which has
a unique solution v’(s) on the non-zero open
subset W N Sg. Then some k x k-determinant
D(s) of coefficients of ='(s) does not van-
ish on W where £ = dimL. On the dense
open set U = {s € W : D(s) # 0} there is a
unique solution v/(s) for the k£ x k sub-system
and by Cramer’s rule v/(s) is meromorphic on
W. Clearly, X\(s)(v'(s)) is the unique solution of
=(s) on U and in particular A\(s)(v'(s)) = v(s)
on SoNW. L]



It remains to show that the system defined
by Af = (1/4 — s2)f is of locally finite type.
This is a technical strengthening of Harish-
Chandra’s finiteness theorem. It can be proved
along the same lines.

Applications: Computation of the volume of
the fundamental domain (Langlands, Boulder
'65)




Naively, we can try to compute vol(I'\'H) by
computing

I(s) = /I‘\H E(z;s) dz

and taking residue at s = % The problem is

that E(z;s) ¢ LY(I"'\'H) in the range of conver-
gence. On the other hand E(z;s) € LY(I"'\'H)
if |Re(s)| < 5. However, we will soon see that
I(s) = 0. (We cannot take the limit inside
the integral because of the non-compactness
of the domain.)

Instead we take for any f € C°(R~g) the wave
packet

0p(z) =)  f(Imnyz)

YEM oo\l
This is a finite sum, and Hf IS compactly sup-
ported in M\'H. By Mellin inversion,

fw = | F(s)y* ds

Re(s)=sq



for any sg where f is the Mellin transform of f

~ - _s dy
f(s) _/R>o f(y)y "

(It is an entire function of Paley-Wiener type)
Thus,

ZOED YN NN OICLED)

YENM o\ €5=50
~ 1
= s)E(z;s — —
Restof( )E( 5)
provided that sg > 1. We can compute

I = /I_\HQf(z) dz

in two different ways. On the one hand we
can shift the contour to Res = % acquiring a
residue at s =1 to get

I=vol(M\H) F(1) + Fls + )I(s) dz

Re(s)=0
On the other hand we can compute I directly
using the definition of Qf. Unfolding the inte-



gral and the sum we get

— — dy = f
[— /r g (M=) d= = /R>O f@w) =7

Comparing the two formulae (as distributions
in f) we infer that

vol(M\'H) = 2vol(T\'H) = %

and I(s) = 0. We used the following Lemma
Lemma 2. Suppose that I1(t) is bounded and

/f(it)l(t) dt = af(1)
for all f € C:°(R~g). Then I =a = 0.

Proof. By taking fi1 = yf' — f we have f; =
(s — 1)f and therefore [ f(it)I{(t) dt = 0 for
I1 = (it—1)I. Since thisis true for all f, I; = 0.
Therefore I = 0. L]

Remark: Using this method Langlands com-
puted vol(G(Z)\G(R)) for any semisimple Cheval-



ley group. For non-split groups this was com-
pleted by Kottwitz using the trace formula,
leading to the solution of a conjecture of Weil's.

Prime Number Theorem (with remainder)
(Sarnak, Shalika 60th birthday volume)

Truncated Eisenstein series: for z in the Siegel
domain set

E*(z; s) y <T,
E*(2;5) —ap(y,s) y>T.

It is rapidly decreasing at the cusp. Maass-
Selberg relations:

AN E*(z;8) = {

INTE*(2;it)[|3 =
B(it) T2 — p(it) T2t
2it ‘

2logT — E,(it) +



where ¢(s) = Cf(’;(ffl). Note that |¢(it)| = 1
and

x/

—(|t) = Re C—(l -+ 2|t)

. 1 . 1
Thus, for T fixed, and t > 2
16(1 4+ 2it)ATE*(z;it)|13 <
1
(1 + 2it)] (J(1 + 2it)[+]¢ (1 + 2it) |+ (5 +iD)+3)

By standard upper bounds for ((1 + 4t) and
¢'(1 4+ 4t) this is majorized by

(1 + 2it)| (log t)2
OTOH
1¢(1 + 2i)ATE*(z; it)||5 >

/ / |g‘(1—|—2lt)/\TE(x—|-|y it ))2 da dy




By Bessel's inequality
2
S i /OO Kit(2m |m|y)o_oit(m)| dy
| I‘(% + it) J

Taking only m = 1 and comparing the two
inequalities we get
Kit(2my)

2
>0 dy . 5
/ oy <G+2nilsn)
Using the precise asymptotic for the Bessel
function in the regime ¢/8 <y < t/4, LHS > %
and therefore

1
14 2it)| >
G +2i0)] > o s
In fact, we would have more precisely
1 5 ‘ 5
- 2 lo—ai(m)|” < 1¢(1 +2it)| (log 1),

m<t/8
The fact that for p prime

‘U—Qit(p) - U—Qit(p2)‘ =1



guarantees that

2 1
o_oit(p)* + o2t ()| > 5
so that at least

S Jo_oit(m)]* > % > > Vt/logt

m<t/8 p<+/t/8:p prime
by Chebyshev. This gives

| 1
CEH20I> liog 13

By refining the argument one can get

, 1
(1 + 2it)| > (log )3

which gives a zero-free region which is almost
as good as the standard one (a la de la Vallée
Poussin).

Gauss class number problem

Gauss conjectured that h(D) — coc as D — —c0
and gave a table for the D’'s with small class
number.



It was known to Hecke and Landau in the
1920’s that under GRH, h(D) > +v/D/log D.
Deuring ('33) If RH is false, then h(D) = 1 for
only finitely many D < O.

> B(i8) = oy (5H5) = (st ) Llst o xD)
z€Np

Suppose that ¢(sop + 3) = 0 with Re(sg) > 0.
Then LHS is zero at sg for all D. However, if
h(D) = 1 then LHS is just E(CTYL; s0) with
5=0,1,6=D (mod 4). OTOH,

ECEYD; 50)

= |D|*0 4 ¢(s0) |D|*04-O(|D|)
D
for all N > 0. Clearly the first term on the RHS

is dominant since Re(sg) > 0, and therefore
LHS cannot vanish.

Remark: Duering’s idea was quickly general-
ized by Heilbronn and Siegel to show Gauss’
conjecture under -GRH, (and therefore solving



it, albeit non-effectively). The best effective
lower bound is roughly log D (Goldfeld, Gross-
Zagier). Interestingly enough it relies on a high
order zero for an L-function (which is “not very
far” from Deuring’'s point of departure).

Spectral decomposition.

Let
L2(M\H) = L3;,.(T\H) @ LZ,,,(T\H)

be the spectral decomposition of A into a dis-
crete and continuous part respectively. Let

Cusp(l‘\H) be the space of cusp forms, i.e.
those f such that

1
/o f(x+iy) dx = 0 for almost all vy.

A-priori, it is not clear that L2,,,(F\H) 7 0 !
At any rate, it is a fact that A decomposes
discretely on Lcusp(l‘\H)

Theorem 1. L5, (M\H) = LZ,,(MH)&C-1

disc



The map L?(R>q) — L2(F\'H) given by

fio Bf = /f(it)E(z; it) dt

is an isometry onto L2 .(IF\'H) and

AES) = B ~ 1))

Alternatively, any f € L2(I'\'H) has a decom-
position

F) =S (uu), - [ EGIEG ) dt
J

in terms of eigenfunctions of A. The first sum
iIs taken over an orthonormal basis of the dis-
crete part. Equivalently,

1913 =S| + o [T 1 BGI)P d
J

Connection with the holomorphic Eisenstein
series



pass to group setup: consider

. 1
E(p,s)= > o(v9)y(yg)®t3
YEN o\
where ¢ : B\G — C where B = {((-3 I)}. Previ-
ously we used ¢ = 1 which gives rise to function
E(gi;s).

Now we get an intertwining map from I(s) =
Ind (tl *> ‘ to the space of automor-
phic forms on I‘\G

For example, taking

cosf sind — _ifk
SOkr((—sine cos@>) — €

and s =k — 3. Then for z = gi

ci 4+ d 1
| |—|—d|> (9790167]6_5)

— Z (mz + n)_zk
(m,n)#0

Gor(z) = ¢(2k) (



IS the holomorphic Eisenstein series. It has
Fourier expansion
4k & 2miz

2¢(2k)(1 — o Y ook_1(n)q") g=ce
2k n=1

Note that I(k — %) is reducible:

1
O — For_1 —>I(k—§)—>D2k_1 — 0

where F; is the [-dimensional irreducible rep-
resentation of SLy(R) and D; is the discrete
series representation. ¢ is the lowest K-type
in D2k—1'

Kronecker limit formula

C 1
E(z;5) = —1+e1109(y° | A(2) ) +e2+0(s—3)
8 R —
2
for certain constants cqg, c1, co where

w .
A(z)=q [[(Q1-¢")%4 q=e"

n=1

Spectral theory for GL, - adelic version.



Let R be the right regular representation of
G(A) on L2(G(F)\G(A)), i.e. R(g)¢(x) = ¢(xg)
for ¢ € L2(G(F)\G(A). For any f € C(G(A))
let R(f) be the operator Jaw) f(g)R(g) dg, that
IS

R(Pe(@) = [ [(9)e(eg) dg.

G(A)
Then
R(De@) = [ fa o)elg) dg =
/G(F)\G(A)WEE%F)JC(CC YY) (vy) dg

— K d
GUNG(A) rlz,y)p(y) dy

i.e., R(f) is an integral operator on L2(G(F)\G(A))
with kernel

Ki(z,y) = > flztyy)

YEG(F)

The spectral theory for PGL> gives
Ky(z,y) = K§"P(a,y) + K7 (,y) + K$" (2, y)



where

K5 = 3 R(f)e(2)e(y)
{v}

the sum is taken over an orthonormal basis of
cusp forms;

reS(ZE y) = > VOI(G(F)\G(A))_I
X F\[p—C*
x°=1

/G(A) f(g)x(detg) dg - x(detzy™1)

and
cont(x y) Z
X'F*\H1—>(C*
> [ EG@ I x 10, DEW, ¢,10) dt

le}
where {¢} is an orthonormal basis of the space

100 = {1 GA) — Cle((§ 1)9) = x(0) 1112 9(9)}
with

(p1,92) = /R>OT(F)U(A)\G(A) ©1(9)p2(9) dg



and for
es((§1)k) = [t° o(k),

I(g,x,8)e(-) = (vs(-9))—s

Mirabolic Eisenstein series for GL,,. Let V be
an n-dimensional space over Q and let V be
the dual space. For & € S(V(A)) set

oo

> ) Y
veV(Q)\{0}
where ®4(-) = P(-g), g € GL(V(A)) acting on
the right on V(A). This is the Mellin transform
of @jbg = Og, — d(0) where

s 1
EY(g,s) = \detg|n+2/O

Op(t) = > P(tv) te Ry
veV (Q)
By Poisson summation formula

Ogp(t) =t "Og4(t 1)



where ® € S(V(A)) is given by

(7 = /V(A)q>(v)¢((a,v)) dv e V(A)

where 1 is a fixed non-trivial character of Q\A.
Also,

Py = |detg| 1 D
where (Tg*,v) = (3,vg~1). By Tate's thesis,

Eg(g,s) =

sl [00 dt d(0)
det g|n T2 / oF (t)tstTn/2Z2 _
detgli 3 ([ @, (et - TV )+
1_s  [OO _.dt $(0)
detg™|2™ n / S 4 tn/2 S _
detg™[2 m (] ©g () t+s—n/2)

Note: For any field extension K of degree n,
K* is a torus in GL,,. We have

/K*\Hl EY (k, s)x(k) dk = (+)L(s, x)

for any Hecke character x of lk.



More generally, starting with a cusp form ¢
on GLn(F)\GLyp(A) we can construct following
Jacquet-Shalika, for each ® € S(M,, 5 (,41)(A))

E(g, ®,¢,s) = |det g|"” /GL (F)\GLy(A)

Y. @ tng)é(x) [deta| DS do

nEMnx(n—Fl) (F)
rk n=n

As in Godement-Jacquet, this can be written

as
E(g, ®,¢,5) =
d t ns
detg /:EEGLn(F)\GLn(A):|detx\21
0] —1Pg]e(x) |det x|~ (" TS gp
|detg*|n(1—s)
r€GLp(F)\GLp(A):|detz|>1

O, 1P 10" () |det x|~ (TDA=9) gy
= E(g" P, ¢",1 - s)

where g € GLn_|_1(A), ¢*(z*) = ¢(x), +Py(y) =



P (zyg)

P (z) = P tr(y - 'z)) d
@ = [y 1y OV 2) dy
and
oel= Y (.
£€Mnx(n—|—1)(F)

rk&=n



