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This series of two lecture is an introductory discussion of problems
concerning nonvanishing of L-values modulo p. Nonvanishing result
has seen powerful applications in divisibility problems of class numbers
(see [W1], [FW] and [ICF] Chapter 7) and in many proofs of the main
conjectures in Iwasawa’s theory. Recently, new methods of proving
nonvanishing emerged in the work of Vatsal, Finis and myself. In these
two lectures, we describe a geometric method, which was stared by
Sinnott in [Si] and [Sil] and has been generalized in [H04], [HO6a] and
[HO6b] via the theory of Shimura varieties.
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1. DIRICHLET L-VALUES MODULO p

1.1. Statement of the theorem for Dirichlet L-values. We con-
sider the group scheme G, = Spec(Z[t,t7']). We fix a Dirichlet charac-

ter A of (Z/NZ)* with A\(—1) = —1 and two embeddings C & Q% Q,.
We regard A to have values in any one of the three fields. Consider a
rational function:

B(t) = Dy (t) = ik(n)t" _ T Mo

1 N € Z[t,t_l](pﬂg_l) = O(Gm,l-
-t

Since the numerator S | A(a)t® is divisible by (¢t — 1), the rational
function @ is finite at ¢ = 1. As Euler discovered in 1735,

®(1) = L(0,\) € Q.

Thus L(0,\) is a p-adic integer in the ring Z,[A] generated by the
values of A. Writing B for the maximal ideal of the p-adic valuation
ring of Q,, the theorem of Washington can be stated as follows:

Theorem 1.1. For almost all characters x : Zg* — pps, L(0, Ax) Z 0
mod ‘B.

By Kummer’s class number formula, we can relate this statement to
the statement on the ¢-power cyclotomic class number.

The automorphic proof of this theorem has several steps.

(Stepl) Hecke operators: Introduction of Hecke operators U(¢) acting
on rational functions on G,, 7 and functions on .

(Step2) Measure associated to U(¢)-eigenforms: Choose a sequence
of generators ¢, in uem so that ¢¢ = (,_; (for example, ¢, =
exp (%)). Fix an isomorphism Z; = Z(1) = lim i given by
e S C* — a € ZJI"Z. For an eigenform ¢|U(¢) = a¢ with
unit eigenvalue a € F; , construction of a measure dug on Z;
with fa—l—f”Z( duy = ¢(¢2) for the image ¢ of ¢* in . Here
a measure p1 on Z; with values in F, is a F,-linear functional
defined on a space C(Z;F,) of continuous functions: Z, — F,.
Thus j : C(Zy; F,) — F, is an F,-linear map.

(Step3)  Ewaluation formula: For a character x : I' = Z, /p—1 — E::

L0, A7) = /

Xdpeo = / Xdprw
VA T

14

for U(¢) = >_.c,, , P(C°) (not ¢ is defined only for ¢ € pu).
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(Stepd) Zariski density: Regard ¥ as induced from the rational func-
tion (te) = Yoe, /pery (®te) + O(t71)) on G = G~/ by
pull-back under the embedding i : py~ — G given by ¢ — ((%).
The Zariski density of i(js~) in a big subvariety in G defined by
the equations of € € py_; (for example, if { =5, —e = = —1
for ¢ = v/—1 gives tt; = 1) implies the constancy of ¥ and
hence of ® (a contradiction) if szX Xdpe = 0 for infinitely many
characters. The Zariski density is the idea of Sinnott [Sil].

We are going to describe each step.

1.2. Hecke operators. A little more generally, we start with py~ over
an integral domain B whose quotient field is K. Take an algebraic
closure K of K. We suppose that ¢ is invertible in B and all ¢-power
roots of are in B. Fix a prime ¢ prime to p. Define a Hecke operator
U(¥) acting on functions ¢ on iy by

S|U(¢) Zcb () =5 Zcb

CGM Tl=¢

Exercise 1.2. Prove
() Uy =U0)" forh=1,2,...,
(2) a(n,o|U(L)) = a(nl,¢) if ¢(t) = > s _o a(n, §)t" is a rational

function on G,,.

From this we conclude ®|U(¢) = A(¢)®. Hence ® is a Hecke eigen
function in

Og,,1 = {0 € F,(G,,)|¢ is finite at 1} (the stalk of Og,, at 1).

1.3. Measure associated to a U({)-eigen function. Since Z,(1) is
compact, any continuous function f : Z,(1) — F, is a locally constant
function. For ameasure yi : C(Z(1); F,) — F,, we often write [, fxudpu
for u(fxv) for the characteristic function x of an open set U C Zy(1).

Fix an identification Z,(1) = Z,;, which is equivalent to choose a
primitive £"-th root ¢, so that ¢}, = (,. Fix a positive integer h. We
have a coset decomposition

z()= || Gz = || +0"z)

z mod ¢hn z mod ¢hn

for every n. The measure p is determined by assigning the value
O(¢r,) = fcz Zo(1)e" du to (¢, Z(1 )g ", To be well defined, these values
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have to satisfy the following distribution relation for n = 1,2, ... oo:

(Dist1)

() = / dyi = / d
" o Ze(1)"" Z CaZe(1)E T

z=w mod (h(n+l) »c7/¢h(nt1) 7,

= G = Y B0 = RUEEE).

— h
z=w mod (h(n+1) Celuzh(nJrl)vCZ :Cl?n

In other words, if ¢|U(¢") = a¢ with a # 0, we can take ®(¢?,) =
(ha=r¢(C2,), and get a measure fi,.

Let B=T, or Q,. Let Og,,1/5 = {¢ € B(G,,)|¢ is finite at ¢t = 1}.
Formally, adding the variable ¢, we may define a measure with variable

(Ea)nh/fd,uqﬁ Z f(@)o(Gnt) € Og,,1/8:

TEL /T,

and then, [ fdug is its evaluation at ¢ = 1: [ fdus(1). We then have
for a primitive Dirichlet character y : (Z/(""Z)* — B*

(ta)™ / W@o(t) = 32 3wl 0)(Gi)”

= > x@ | =600 > xHm)a(m, o)™,

m TEZL/NMT m

where G(x) is the Gauss sum: G(x) = >_,cz/mz X(7)¢* # 0.

1.4. Evaluation formula. Applying the computation in the previous
section to ¢ = @\ =Y *_  A(m)t"™ and evaluating the result at ¢ = 1,
we find

/ Ydjis = (EN0) "GOO, -12(1) = (EA0) " GOOL(0, x 1),

Since y # 1 is supported on Z,*, we may restrict duge to Z,*.

Since any character x : Zy* — e factors through T' = Z,* /pe_1,
we want to have a measure ¢ supported on I' = Z,™ /uy_1 so that we
have

/ngp = / xdug for all character x of I'.
r Z

The measure ¢ is not associated to a rational function like ®, but if
we allow functions on =, ¢ is associated to a function ¥ close to ®.
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Noting that pe—y C Zy acts such functions by ¢(¢) — ¢(C%) (s € Zy),
we find that ¢ = dug for ¥ given by

V)= > )= DY (2C)+ () ifL1N.

€€He—1 e€pp—1/{F1}

1.5. Zariski density. We now assume that B = F,. We admit the
following result in [Sil]:

Theorem 1.3 (Sinnott). Let Z C o (F,) be an infinite set. Let F
be the F,-algebra of functions on Z with values in F,, and define an
integral domain Fo = F /N for the prime ideal N formed by functions
vanishing at almost all ( € = (except finitely many C). Ifay, ..., a, € Zy
are linearly independent over Z, the algebra homomorphism from the
affine ring Ry = B[y, y1" ...,y u Y] of GT, into Fy sending y; to an
element of Fo given by ¢ — (% for j =1,2,...,r is injective.

To conclude the assertion of (Step4), we need to make the following
variable change: Let A be the additive subgroup of Z, generated by
te—1 and take an Z-basis [ = {ay,...,a,} of A. Take a complete set of
representative €1, ..., e, of g1 /{£1} and write ¢; = >, ¢;;a;,. Write
Gle-/ED Spec(R) for R = F,[ti,t7", ... ta,t;] (t; corresponds
to the component indexed by ¢;). Consider the ring homomorphism
R — Ry sending ¢; to [[,y;”. This induces a morphism ¢ : Y = G}, —
@%’1/ & o algebraic groups, and for an infinite subset = C iy,
= ={(¢",...,¢*")|¢ € Z} is the image of {(¢™,..., ()| € Z} C Y
which is dense in Y by the above theorem. Then in the following
section, we conclude the assertion of (Step4) from

Lemma 1.4. Let the notation be as above. Then a relation of the form:
in R for Pj(z) € F,[z, 27 can only occur if Pj(z) € F, for all j.

Proof. Let Ry = Fply1,u1 ", ..., yr, y 1], Restrict Py(ty) 4 --- + BPo(tn)
to Y and look at > . P, ot € Ry. Since a; is a basis of A, P; o 1(y)
and Pj o ((y) for i # j do not contain common monomials of y;. Since
monomials of y; are all linearly independent over F,, we find that the
relation (*) implies P;(z) € T, for all 4. O

1.6. Application of Zariski density. We first assume that [ xdy =
0 (that is, L(0,x™*A) = 0 mod ) for all x : I' — . Then by
orthogonality relation of characters, we find W(¢) = 0 for all ¢ € .
Thus we find that ®(¢°) + ®(¢t—°) € F,, which is impossible by the
t-expansion of ®.
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Now we assume a weaker condition that we have an infinite sequence
of characters {x;}; of order ¢" with [.x;de = 0, which implies by
variable change: [i. x;(z)dp(az) = 0.

Exercise 1.5. For any field k of characteristic different from £, prove

the following formula for a primitive £"-th root of unity , with n > 2
not in k: Trye, 1 u(CGh) #0 & (7 € k.

We assume that A has values in F; (¢ = p’). Then applying the
Frobenius automorphism F'(z) = 29, we find for y = x; and n = n;

0=(/F(>dwax) <Zx c)

= S @G =1 ) [ deta

for all n. Thus taking the trace of [, x(x)dp(ax) from the field Fy[x;]
generated by the values of x; to Fy[u], we find that

Y. e =0

uex; ! (Fqlue))

for all € I'/T*” . Writing the order of the ¢-primary part of (Fy[s])*
as (™, note that the above sum only involves u € ' " /T Tak-
ing n; so that n; > 2m, we can identify the multiplicative group
" /1YY with the additive one Z/fmZ by Z/MZ > v 1404y =
u. We can then write y;(u) = (i’ for b; € (Z/(™Z)* and (™ = (Y.
Since {x;} is infinite, we may assume that b; is a constant b. We have
for any a € Z;

D, GGG = Y GGG =0
v mod (m v mod (m
where for f € F,(G,,), flx € F,(G,,) is defined by f|z(t) = f(tx) for
r € G,,(F,). Since 7(Z) for = = U #1pn; is still dense in Y, applying
Lemma 1.4 to Pj(z) = ®}(2)+®}(3) for ®}(2) = 32, wod emo G P1Gno (2)
on G,, = Spec(F,[z,271]), we conclude P;(z) € F,, whose Taylor ex-
pansion at z = 1 can be easily seen to be nonconstant by computation.
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2. MobDULAR CURVES

We create a circumstance very similar to the pair (G,,, py~ ) replacing
Gy, by modular curves and piy by CM-points of modular curves. This
new setting allows us to prove nonvanishing modulo p of Hecke L-values
in the following sections. We write G(A) = GL2(A).

2.1. A sketch of the theory of modular curves. We study clas-
sification problem of elliptic curves E,4 over a ring A (which is an
algebra over a base ring B). The abelian group E has the identity
section Op : Spec(A) — E, and Qg4 is a locally free sheaf of rank 1.
In particular, if it is free, we have a unique generator w € H°(E, Qp/4)
such that Qp/4 = Opw. Since E is projective, H*(E,Op) = A, w is
uniquely determined up to multiplication by units in A*.

We consider the following moduli functor of level I'( V),

Er(A) = (B, éx : (Z/NZ)* = EIN])[{¢n(1,0), 6x(0,1)) = (] ,

for all Z[4, (J-algebras A, where ( is a generator of py. Here (-,-) is
the Weil pairing. We know classically &prn)¢(C) = T'(IV)\9. If we
remove the contribution upon ¢ and consider the functors Pryy(A) =
[(E,w,¢n)/a] and Erny(A) = [(E, dn);a] defined on the category of
Z|+]-algebras, we have Pryy = Ll Pravyc and Ervy = e Ery.c
and these functors are represented by a geometrically non-connected
scheme My (y) and Y(N) defined over Z[+] if N > 3. Note that
V(N 2 cn) = Leeps Ye(N) with Y, (N)(C) = D(N)\$.

We can let a constant group a € SLy(Z/NZ) act on Y:(N) (and
hence on Xc(N)) by (E, ¢) — (E, ¢oa). Since (¢oa(1,0), poa(0, 1)) =
]C\I,Ct(a), the same action of o € G(Z/NZ) induces an automorphism of

Y(N) (and X (N)) regarded as schemes over Z[+] (not over Z[+, (n]),

which coincides with the Galois action (y +— C]C\I,Ct(a) on Z[(n]. By

taking the limit ¥ = lim Y'(NN) (which is a pro-scheme defined over
Q). G(Z) = lim G(Z/NZ) acts on Y, and SLQ(Z) preserves the
connected component Y = lim Y¢, (N).

A remarkable fact Shimura found is that this action of G (Z) can be
extended to the finite adele group G(A()) (see [IAT] Chapter 6). An
interpretation by Deligne of this fact is fascinating (see [PAF] 4.2.1): To
explain Deligne’s idea, we define the Tate module T'(E) = lim E[N]
for an elliptic curve E,4 for a Q-algebra A. Strictly speaking, tak-
ing a geometric point s = Spec(k) € Spec(A) (for an algebraically
closed field k) in each connected component of Spec(A), we are think-
ing of the Z-module T(E) = lim FE[N](k) (the choice of s does not
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matter, and the module structure over 7 (Spec(A)) of T(F) is de-
termined up to inner conjugation of the algebraic fundamental group
m1(Spec(A)); see [PAF] Chapter 4, Appendix). Then T(F) & Z* and
V(E) = T(E) @z A = (A(®)2 Deligne realized that Y represents
the following functor defined over Q-ALG:

8(00)(/1) ={(E,n: (A(""))2 = V(FE)),/a}/isogenies,

where an isogeny ¢ : £ — E’ is a morphism of group schemes with
finite kernel (so dominant). Here A(®) is the finite adele ring. Then
g € G(A) sends a point (E,n),4 € ECI(A) to (E,no0g®)),4 for the
projection ¢(*) of g to A(®).
. _ . ( ) _ .
Take the prime-to-p part YP) = @MNY(N)' Here N runs over

all positive integers prime to p. Then Y® classifies (E,n®), 4 up
to prime-to-p isogenies for Z,-algebras A (Zqy = Q N Z,). Here
putting VP)(E) = T(E) @z AP 1®) is the prime-to—p level structure
n® : (AP>))2 = V(P)(E). In other words, Y represents the following
functor defined over Z,)-ALG:

EP(A) = {(E,n: (AP))? = V(p)(E))/A}/prime-to-p isogenies,

where an isogeny ¢ is prime to p if the order of the kernel of ¢ is prime
to all primes in p. This pro-scheme Y ® is defined over Lpy; S0, its

restriction to F,-algebras Y/%’) is a characteristic F,-scheme classifying
P

(E,n®) 4 for Fy-algebras A. On Y again G(AP) acts.

If we have a prime-to-p non-central endomorphism o« : £ — FE,
then E has complex multiplication by M = Q[a], and we can write
aon =nop(a) for p(a) € G(A®)). Thus if v = (E,n) € Y(A), we find
that p(a)(z) = x. For any elliptic curve E, we have Q C End(F) ®7Q;
so, the central element & € Q% C G(A(®)) acts trivially on Y. Thus,
x = (E,n) has CM by an imaginary quadratic field M if and only if
M*/Q* is the stabilizer of z in Aut(Y).

Pick an elliptic curve £ = X with complex multiplication by R, =
Z+{"R, where R is the integer ring of M. We suppose that p splits into
(p) = pp in R,. Consider W = W(F,) inside C, = Q, and its field of
fractions K. We put W = W NQ which is a strict henselization of L)
We suppose that p = R, Nmyy and X[p>] is étale over YW. Then we can
pick a level p-structure 7, : ppo = X|[p™]. Identify X(C) = C/a for an
R,-ideal a and fix a base wy, ws of a ®z (Z, x AP>)) which induces
prime-to—p level structure n® : (AP*))2 22 q @, AP®) = V@)(X). We
assume that p(a)wi, = aws, for R, — R,. Since a € R, induces an
isogeny o : X — X sending an® = n® p(a), the point z = (X,n®)
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is fixed by p(«). Consider the formal completion Y =Y, of Y(p along

x € YP(F,). Then by the universality of Y, Y satisfies
Y(4) = E(A),
where A runs through p-profinite W-algebras with A/my = W/my =
F, and E(A) = [E/A‘E R4 F, = X7, |- Indeed Y classifies (E,n®)
with (E,n p)) x 4F, = (X,7®), but ) uniquely determines ng’), S0, wWe
can drop the datum of the level structure. By the deformation theory
of Serre-Tate, = Gm canonically. This goes as follows. First £,4 €

£(A) is determined by the extension E[p™]° — E[p™] — E[p™]* of
the Barsotti-Tate groups. Such an extension over A is classified by

Hom(E[p*]*, E[p™]°) = Hom(Qp/Zp 4, fip= /) = lm prpr (A) = G (A).
For this identification, we need to fix 7, : pp~ = X|[p>°] and its dual
X[p™] = Q,/Z,. Since p(a) fix z, it acts on Y.

Lemma 2.1. Identifying Y with G,, = Spf(liﬂln Wt t=/(t—1)"), we

have p(a)(t) =t ° for complex conjugation c.
p

Let ¢ € Y(W[un]) be a p-power root of unity. Then if @ = af
mod p", o!~* =1 mod p" we have ¢*'° = (. This shows that the
point ¢ € Y carries an elliptic curve X, with an isogeny o € End(X¢)
inducing ¢ — t*° on Y. Thus X¢ has complex multiplication by
R, =Z+p"R. If X is actually defined over F,», we have the relative
Frobenius map ¢ = a € End(X) of degree p”. Then the relative Frobe-
nius map F' of 17/]th can be written as p(a). We then have p(a™)(¢) =1
for ¢ € ppnn, and o™ : X, — X is an isogeny of degree p™. In other
words, we have

{X} ={X/C|C # X[p™]°: cyclic subgroups of X of order p""}.

By this, we can see that the modular Hecke operator U(p) coincides
with the G,, Hecke operator U(p).
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3. NONVANISHING MODULO p OF HECKE L—VALUES
In 1899, Hurwitz studied an analogue of the Riemann zeta function:
1
Lik) = >, —m
a+bicZ[i]—{0} (a +bi)
of Gaussian integers Z[i| and showed that for positive integer k,

L(4k bod d
g(24k) €eQ (2= 2/0 \/% = [{5 : period of the lemniscate).

Nowadays, we regard this value as a special value of a Hecke L-function:

L(s,\) = Z A(a)N(a)™® of the Gaussian field Q[i].

Here \ is a Hecke ideal character of Q[i] with A((a)) = a~* and
L(4k) = 4L(0, \).

We shall give a sketch of a proof of non-vanishing modulo p of al-
most all Hecke L—values for general imaginary quadratic fields M =
Q[v—D]. The Hurwitz formulation is modular: For any lattice L =
Zawy + Zaws C C, we can think about

Eor(L) = % Z WUl‘l'l—bW)% (Eisenstein series),
aw1+bws €L
which is a function of lattices satisfying Eop(aL) = a=28 Eoi(L). The
quotient C/L gives rise to an elliptic curve X (L) C P? by Weierstrass
theory. Since X (L) has a unique nowhere vanishing differential du for
the variable u of C and we can recover out of (X (L), du) the lattice L
as {fﬁ/ du|y € Hi(E,Z)}, we can think of Fy; as a function of the pairs
(X,w) of an elliptic curve X and a nowhere vanishing differential w sat-
isfying For(E, aw) = a~2* By (E, w). Note that Ey(F,w) = 15592(E, w)
and Fg(F,w) = W}(]gg(E,w). More generally, Ey is a rational isobaric
polynomial of go and g3. Thus FEs; is a modular form f of weight 2k.
Write R for the integer ring of M. We assume that p splits into
p = pp in R so that p gives rise to a p-adic place i, : Q — @p. We
write W for the ring of Witt vectors with coefficients in an algebraic
closure F, of the finite field F, and regard it as a valuation subring
of C, D @p (in other words, W is the closure in C, of the p-adic
integer ring of the maximal unramified extension of Q,). We define
W =W, =i (W) with maximal ideal 8. Important facts are

(E1) For a lattice a C R prime to p (a is prime to p if [ : a] is prime
to p), X(a) is p-integral defined over W C Q;
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(E2) Eyy is defined over Q (actually over Z, for almost all k) by the
g-expansion principle;

(E3) Let w = Qdu be a generator of H°(X(R), Ux(r)w) (which
means that H°(X(a), Qy(@,w) = Ww, because a is prime to
p), in other words, Q = fﬁ/w for a 1-cycle v with Ry =

Hy(X(a),Z)). Then % is the partial L-value of the
1

ideal class of a=*:
Eor(X(a),w) _ Eor(X(a), Qdu) B Eor(X(a), du) Lo-1(2k,N)  —

N (@2 A(a) N@%Na) BN@EAe) | o @
because
Eor(X(a), du)

= Lo (2k,0) = ) A(B)N(b)™*

b~a—1

N(a)*A(a)

for a Hecke character A with A\((a)) = a2,

In order to get p-integrality and an U(¢)-eigenform, we modify the
Eisenstein series Eoi, into Ey(2) = Fax(z) — Eox(fz). Then we have
52k(X(Cl), (U) eWw.

Fix a prime ¢ # p. A character y : {ideals of M prime to ¢} — C*
is called ¢-anticyclotomic if y(a¢) = x(a)~! for complex conjugation ¢
and x((a)) =1if a =1 mod ¢" for some n > 0.

As described above, which is a result of Hurwitz, Damerell and Weil
combined, that

(2k — 1)!LO(0, Ax)
Q2k

where L(0, \x) = {qu(l — Ax([))} L(0, A\x). Then we have

€ W for l-anticyclotomic Yy,

Theorem 3.1. Fix a prime{ # p. We have %W # 0 mod ‘B
except for finitely many £-anticyclotomic characters x.

Here we shall give a sketch of the proof of this special case in the
following couple of sections as outlined in the case of (G, jtg=). The
result in the above imaginary quadratic cases are also treated by Finis
(see [Fi]) under different assumptions (see also Vatsal’s papers [V] and
[V1] for related topics).

3.1. Modular forms of I'y(¢{"). We take the following moduli theo-
retic definition of modular form on I'g(¢"). A level I'g(¢")-structure on
(E,w),p (for a base Z)-algebra B) is an étale subgroup C' C E[("] de-
fined over B étale locally isomorphic to Z/¢"Z. Then f € G,(I'¢(¢{"); B)
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is a functorial morphism for all B-algebras A,
Proey(A) = [(B,C,w)a] — AL(A) = A

satisfying the following conditions: Regarding f as a function of iso-
morphism classes of (E,C,w),a with f((E,C,w),a) € A satisfying

(Gl) .f((E> 07 aw)/A) = a_k.f((E> 07 w)/A) fora e A* = Gm(A)a
(G2) If p: A — A’ is a morphism of B-algebras, then we have

.f((E>O> w)/A XA A/) = p(f((E,O, w)/A));

(G3) The function has finite g-expansion at the Tate curves with level
Lo (¢™)-structure.

3.2. Measure associated to a Hecke eigenform. The first step
towards the proof of the theorem is a construction of a measure inter-
polating values of a Hecke eigenform at CM points. We apply this to
Eisenstein series Foy.

Take the base ring A to be F, = W/$B. We add a datum of a cyclic
(-subgroup to the definition of modular forms. A modular form ¢ on
Lo(¢) assigns its value g(E,C,w) € A to each isomorphism class of a
triple (E,C,w) 4 defined over an F,—algebra A, where C)4 is a cyclic
subgroup of order /.

Summing over ¢-cyclic subgroups C’ of E different from C, the Hecke
operator U({) is defined by

(3.1) gl U(0) = % S G(E/C,C+ CC mw),
=

where 7 is the étale projection 7 : £ — E/C’. We could have started
modular forms over A = W, N W,. Then each E has C giving the
connected component over A, and under this circumstance, modular
U(¥) coincides with the G,,-version of U(¢) as already seen.

If we write the standard g-expansion of g at co g(q) = >, a(n,g9)q",
we have a(n, g|U({)) = a(nt, g).

Fix a modular form f on Ig(¢) of weight 2k with f|U(¢) = a(f)f.
We again rediscover

(UL) a(n, flU()) = a(nt, f) = a(f) - a(n, f).

Hereafter we simply write a for a(f). Fix an imaginary quadratic
field M = Q[v—D] C Q in which p splits: (p) = pp. Consider the
order R, :=Z + ("R for the integer ring R of M. We write

_ projective fractional R,-ideals

Cl, : = M\(M))* S (AN * R,

principal R,,-ideals
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which is the ring class group of R,,. We define Cl, = linn Cl,, for the
projection Ty 4pny @ Clytm, — Cl, taking a to aR,. The group Cl is
isomorphic to the Galois group of the maximal anticyclotomic abelian
extension of M unramified outside .

As before, X (a) is the CM elliptic curve with X (a)(C) = C/a. We
fix a basis wy, wy of R so that its p-component is given by idempotent
ep of Ry, and ey of Rp. At ¢, write Ry = Z¢ + ZoVd with d € 7,
choosing d € Z; if Ri/Z; is unramified. If [a] € CI, is a proper
Ry-ideal, we may choose a so that ar = (Z, Z) (/") ay'(1,V/d) for
an, = (§ &) and some integer j unique modulo ¢". Then we take a basis
Hwy(a), wy(a)) of @ as follows: At £, it is given by a,,'(1, vV/d) and outside
¢, (wi(a)®, wa(a)®) = (aw'?, awl?) for a € (M?)* with aR = aR.
Out of this, we have a unique z(a) = (X(a),n(a)) € Y/Iy(¢) with
Iy(f) = {z € GLQ(Z)K:W mod () € B(F,)} for the upper triangular
Borel subgroup B C . Moreover, we have

(3.2) pla)(z(a)) = z(aa) for all a € R(Xg),
and

(3.3)  ml i ([ao)) = {((1] 1) a1 (z(ag)) for j € Z/EZ} for n > 2.

We choose the Néron differential w(R) so that Qxrw = Ww(R).
Since X (a) is étale isogenous to X (R), w(R) induces a differential w(a)
on X(a) with Qx(q)w = Ww(a). Since a; = a;R,, for a; € M), we
have a cyclic subgroup C(a) := a¢(R,—1/R,) of X(a). This subgroup
is n(a)(¢~'Z,)Z, & 0). The A-twisted value

f(la]) = (@) 7" Aa) ™" (X (a), C(), w(a))

depends only on the ideal class [a] in Cl,.

For a given projective R,,—ideal a, there are exactly ¢ projective R,,1-
ideals a; with a;/a =2 F,; (< X(a;) = X(a)/C" for some C’ of cyclic of
order ¢ not equal to C'(a)), and we find from (3.1) and f|U(¢) = af

¢

(3.4) fla) = > f([a)-

i=1

We define a measure df on Cl, as follows: if ¢ factors through C1I,,,

¢df = Y d(a)f([a)).

Cloo [a]€Cln

By the distribution relation (3.4), this is a well defined independently
of the choice of n. Let E = Foi(2) — Ea(¢z) be the Fisenstein series
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of weight k on I'o(¢) with E|U(¢) = (**71E and

2k — DILO0, x '\
(3.5) / xap = PR 0,

3.3. Density of CM points. Each integral R-ideal 2 of M prime
to £ gives rise to a unique proper R,—ideal a, = A N R,, and the
limit [A] = lim [a,] is a well defined element of Cls. We extend this
construction to fractional ideals by [AB 1] := [2A][B]~'. Thus the ideal
group I of fractional ideals of R (prime to ¢) is a subgroup of Cl..

If [a] is an ideal class in Cl,, then z[a] = (X(a),C(a)) 5, gives a
unique closed point z[a] of the modular curve X,(¢). Let n: 0 <ny <

ng < ---<n; <--- be an infinite sequence of integers. Define
E:EQ—{ ‘ € Ker(mp, n, ) forjzl,Q,...}
and put EQQ = {(:E[éa])geg € Xo(¢ ‘ al € E} for a subset Q@ C Cl,

where Xo(€)° = [];c0 Xo(¢) and da is the product of Tun, () and [a]
in Cl,,. By the same argument as in the Dirichlet character case (using
the g-expansion in place of the t-expansion), the desired result follows
from

Theorem 3.2 (density). If Q is finite and injects into Cly /I, the

subset =2 is Zariski-dense in XO(E)/]F
- P

Thus if >, f5([da]) = 0 for all a € = for (fs5)seo with modular form
fs on Xo(N), the individual fs5 vanishes.

To relate the theorem to Chai’s Hecke orbit conjecture, write Q =
(61,...,01). we take the CM point z; = (X(a),n®?) € Y®. Let
p: R — Aut(Y®)) given by an® = n®p(a). We let T = R(p)/Z(Xp)
act on V" by [I; p. This action fix x = (z, -, z). Theorem 3.2 in turn
follows from the following theorem proving a version of Chai’s Hecke
orbit conjecture:

Theorem 3.3 (C.-L. Chai). Let T acts on V5 = (Y®Y™ diagonally.
Let Z be an irreducible subvariety Z of V' containing a fixed point of
T. If for a subgroup T C T whose p-adic closure is open in R) |7}
leaves Z stable, then Z is a Shimura subvariety of V.

We admit this theorem basically proven in [C2] Section 8 (see also
[HO6a] Corollary 3.13). In [C2] Section 8, a weakly Tate-linear subvari-
ety of V' is proved to be a Shimura subvariety. In [H06a], the subvariety
stable under 7' is proved to be weakly Tate-linear. See these papers for
the definition of Tate-linearity.
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After permutation of factors Y ®), any nontrivial Shimura subvariety
of V is contained in (Y®)™=2 x A, , for g,¢' € G(AP>®)), where

Ngg ={(2-9,2- gz e YP} E"{(2,2.g7)z € YP}.

Note here the action of G(A®>)) on Y is a right action. Here we call
a Shimura subvariety trivial if it is in (Y ?))™~! x  for a CM point z.
Since Z contains a fixed point (x1,...,x,,) of 7, the elliptic curves X;
sitting over z; are isogenous and have complex multiplication by M;
so, they are isogenous. Thus, moving Z by an action of G(A®P>®))™ we
may assume that the fixed point is (z,z,...,z). Since A,y contains
a fixed point (x,z). Writing X for the elliptic curve sitting over z,
¢ '¢" induces an endomorphism of X; so, g7'¢’ = a € M*. Now we
prove Theorem 3.2. Let m = h and 7 : V — X;(¢)€ be the projection.
Let Z; be the Zariski closure of 77*(Z). Since the action of a € T
permutes points in 775(Z9) if « = 1 mod " for n = n; (by (3.2)),
the 7y = {a € T|a =1 mod ("} leaves Z; stable. Take an irreducible
component Z of Z; containing (z(R,),...,z(R,)). Then the stabilizer
of 77 of Z is of finite index in 7; whose p-adic closure in R} / Z, is an
open subgroup. Thus we can apply Chai’s theorem. After permuting
the factors of V, Z C (Y®)'=2 x A, . Thus 6, 1/0n = g7'¢' = «

in Aut(Yi”). Since Yo = G, = Spf(Z,[t,t]) and Aut(G,,) = 7y

via Z3 > a — (t = t%) € Aut(G,,), this implies 6,11 = 6,1, a
contradiction. Thus Z = V and hence Theorem 3.2 follows.

3.4. Nonvanishing of L—values modulo p. If [xdE = 0 for all

characters xy : Clo — F;, then by orthogonality relation, we find
E([a]) = 0 for all a € C1, for all n. Then a trivial form of the density
theorem applied to the single copy Xy(¢) tells us that the individual
E has to vanish on Xy(¢), which is a contradiction because the g¢-
expansion of E does not vanish modulo p.

We want to get the same type of contradiction only assuming the
vanishing of the integral for infinitely many x. The technique of Sinnott
still allows us to do this under the stronger form of the density theorem
if the measure were supported by Z,-torsion free group (instead of
Cly). Thus we want to have a measure on a torsion-free group still
interpolating E([a]).

We decompose Cl,, = I' x A with a torsion-free subgroup I' & Z,
and a finite group A. We project the measure dFE down to I' and
write it dEr. To make explicit this measure dFEr, we choose a complete
representative set Q for Cl./I" =2 A made of split primes q. We write
g = N(q) which is a rational prime. Pick q € 9, and write (¢) =
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qq’. At ¢, we choose w; 4 and ws 4 for the idempotent of Ry and Ry,
respectively. Then for the degeneration map f|[q](z) = ¢**'f(q2),
flla)([a]) = f([ag™"]).

For simplicity, we assume that M ramifies at only one prime (to
avoid appearance of nontrivial ambiguous class). Then the projection
{ld]r}qeq to I is independent modulo 1.

Then by computation, we get

/cb )dEr(x Z/cb ali2)d(E|[q]) (=),

qeQ

We suppose a weaker condition that we have a infinitely many char-
acters {x; : [' = puoo }j=1,2. .00 With vanishing integral fr x;dEr = 0.
Take a sequence of integers n; so that x; factors through Cl,,. By a
technique invented by Sinnott, from the stronger form of the density
theorem for the sequence {n;};, we can conclude the vanishing of F|[q]
on the g-th copy Xo(¢) if for each o € Gal(F,/F,) (if A mod P has
values in F)), we have

(S) /XUdEF =0& /XdEF = 0.
T T

This assertion (S) follows from the reciprocity law at the CM point z(a)
in the following way: The reciprocity law (of Kronecker-Shimura; see
[PAF] 2.1.4) tells us that for the Frobenius map ®(z) = a? for x € [,

©(E([a))) = E([p~"a]),

where p = pp and p corresponds to ¢,. Then we have (for positive

integer m)
o™ / XdEr) = x7(p") / X dEr,
Cloo Clos

which shows (S), and we get the theorem.

Let us give slightly more details of the argument. By our assumption,
we have an infinite sequence of characters {x; : I'/T7 — e (F,)};
of order ¢ with fr X;dEr = 0, which implies by variable change:
Jp xi(x)dEr(az) = 0 for any a € I'. Recall that A has values in F
(for ¢ = p"). By (8), taking the trace of [, x(z)dEr(ax) from the ﬁeld
Fox;] generated by the values of x; to F [,Ug] we find that, putting

(@) = 3o Ellal (dlra),
S ¥ =0

uex; ! (Fqlue))
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for all € I'/T" . Writing the order of the ¢-primary part of (Fy[s])*

as (™, note that the above sum only involves u € '’ " /T Tak-

ing n; so that n; > 2m, we can identify the multiplicative group
7" T with the additive one Z /0™ Z by Z/0"7 > v — 1447y =
u, and ula] = ((1] v/fm) [a] by (3.3). We can then write x;(u) = ¢ for
bj € (Z/I™Z)* and (3" = (2¢y,. Since {x;} is infinite, we may assume
that b; is a constant b. We have for any a € I, by (3.3)

S Bwau) = D (L) (a) =0,

v mod ¢m v mod ¢m

Since w(Z) is still dense in Y, by the density theorem, we have

Ey= Y GUElal(37f") =0.
v  mod ¢m
By computing g-expansion, the g-expansion coefficient a(n, E}) of E,
for ¢" for n = —b mod (™ is equal to {™a(n, El[q]), and we can easily
find such n with a(n, E|[q]) # 0 mod p, a contradiction, which proves
the desired assertion.
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