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This series of two lecture is an introductory discussion of problems
concerning nonvanishing of L-values modulo p. Nonvanishing result
has seen powerful applications in divisibility problems of class numbers
(see [W1], [FW] and [ICF] Chapter 7) and in many proofs of the main
conjectures in Iwasawa’s theory. Recently, new methods of proving
nonvanishing emerged in the work of Vatsal, Finis and myself. In these
two lectures, we describe a geometric method, which was stared by
Sinnott in [Si] and [Si1] and has been generalized in [H04], [H06a] and
[H06b] via the theory of Shimura varieties.
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1. Dirichlet L-values modulo p

1.1. Statement of the theorem for Dirichlet L-values. We con-
sider the group scheme Gm = Spec(Z[t, t−1]). We fix a Dirichlet charac-

ter λ of (Z/NZ)× with λ(−1) = −1 and two embeddings C i∞←↩ Q
ip
↪→ Qp.

We regard λ to have values in any one of the three fields. Consider a
rational function:

Φ(t) = Φλ(t) =
∞∑

n=1

λ(n)tn =

∑N
a=1 λ(a)ta

1− tN
∈ Z[t, t−1](p,t−1) = OGm,1.

Since the numerator
∑N

a=1 λ(a)ta is divisible by (t − 1), the rational
function Φ is finite at t = 1. As Euler discovered in 1735,

Φ(1) = L(0, λ) ∈ Q.

Thus L(0, λ) is a p–adic integer in the ring Zp[λ] generated by the
values of λ. Writing P for the maximal ideal of the p–adic valuation
ring of Qp, the theorem of Washington can be stated as follows:

Theorem 1.1. For almost all characters χ : Z`
× → µ`∞ , L(0, λχ) 6≡ 0

mod P.

By Kummer’s class number formula, we can relate this statement to
the statement on the `-power cyclotomic class number.

The automorphic proof of this theorem has several steps.
(Step1) Hecke operators: Introduction of Hecke operators U(`) acting

on rational functions on Gm/Fp
and functions on µ`∞ .

(Step2) Measure associated to U(`)-eigenforms: Choose a sequence
of generators ζn in µ`n so that ζ`

n = ζn−1 (for example, ζn =
exp

(
2πi
`n

)
). Fix an isomorphism Z`

∼= Z`(1) = lim←−n
µ`n given by

µ`n 3 ζa
n 7→ a ∈ Z/`nZ. For an eigenform φ|U(`) = aφ with

unit eigenvalue a ∈ F×
p , construction of a measure dµφ on Z×

`

with
∫

a+`nZ`
dµφ + φ(ζa

n) for the image ζa
n of ζa in µ`n . Here

a measure µ on Z` with values in Fp is a Fp-linear functional
defined on a space C(Z`; Fp) of continuous functions: Z` → Fp.

Thus µ : C(Z`; Fp)→ Fp is an Fp-linear map.

(Step3) Evaluation formula: For a character χ : Γ = Z×
` /µ`−1 → F×

p :

L(0, λχ−1) +
∫

Z×
`

χdµΦ =

∫

Γ

χdµΨ

for Ψ(ζ) =
∑

ε∈µ`−1
Φ(ζε) (not ζε is defined only for ζ ∈ µ`∞).
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(Step4) Zariski density: Regard Ψ as induced from the rational func-

tion Ψ̃(tε) =
∑

ε∈µ`−1/{±1} (Φ(tε) + Φ(t−1
ε )) on G = Gµ`−1/{±1}

m by

pull-back under the embedding i : µ`∞ ↪→ G given by ζ 7→ (ζε).
The Zariski density of i(µ`∞) in a big subvariety in G defined by
the equations of ε ∈ µ`−1 (for example, if ` = 5, −ε = ε2 = −1

for ε =
√
−1 gives tε2t1 = 1) implies the constancy of Ψ̃ and

hence of Φ (a contradiction) if
∫

Z×
`

χdµΦ = 0 for infinitely many

characters. The Zariski density is the idea of Sinnott [Si1].

We are going to describe each step.

1.2. Hecke operators. A little more generally, we start with µ`∞ over
an integral domain B whose quotient field is K. Take an algebraic
closure K of K. We suppose that ` is invertible in B and all `-power
roots of are in B. Fix a prime ` prime to p. Define a Hecke operator
U(`) acting on functions φ on µ`∞ by

φ|U(`)(t) =
1

`

∑

ζ∈µ`

φ(ζt1/`) =
1

`

∑

T `=t

φ(T ).

Exercise 1.2. Prove

(1) U(`h) = U(`)h for h = 1, 2, . . . ,
(2) a(n, φ|U(`)) = a(n`, φ) if φ(t) =

∑
n�−∞ a(n, φ)tn is a rational

function on Gm.

From this we conclude Φ|U(`) = λ(`)Φ. Hence Φ is a Hecke eigen
function in

OGm,1 = {φ ∈ Fp(Gm)|φ is finite at 1} (the stalk of OGm at 1).

1.3. Measure associated to a U(`)-eigen function. Since Z`(1) is
compact, any continuous function f : Z`(1) → Fp is a locally constant

function. For a measure µ : C(Z`(1); Fp)→ Fp, we often write
∫

U
fχUdµ

for µ(fχU ) for the characteristic function χU of an open set U ⊂ Z`(1).
Fix an identification Z`(1) ∼= Z`, which is equivalent to choose a

primitive `n-th root ζn so that ζ`
n+1 = ζn. Fix a positive integer h. We

have a coset decomposition

Z`(1) =
⊔

z mod `hn

ζz
hnZ`(1)

`hn

=
⊔

z mod `hn

(z + `hnZ`)

for every n. The measure µ is determined by assigning the value
Φ(ζz

hn) =
∫

ζz
hnZ`(1)`hn dµ to ζz

hnZ`(1)
`hn

. To be well defined, these values
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have to satisfy the following distribution relation for n = 1, 2, . . . ,∞:

(Dist1)

Φ(ζw
hn) =

∫

ζw
hnZ`(1)`hn

dµ =
∑

z≡w mod `h(n+1) ,z∈Z/`h(n+1)Z

∫

ζz
nZ`(1)`h(n+1)

dµ

=
∑

z≡w mod `h(n+1)

Φ(ζz
h(n+1)) =

∑

ζ∈µ
`h(n+1) ,ζ

`h
=ζw

hn

Φ(ζ) = `hΦ|U(`h)(ζw
hn).

In other words, if φ|U(`h) = aφ with a 6= 0, we can take Φ(ζz
nh) =

`−nha−hφ(ζz
nh), and get a measure µφ.

Let B = Fp or Qp. Let OGm,1/B = {φ ∈ B(Gm)|φ is finite at t = 1}.
Formally, adding the variable t, we may define a measure with variable

(`a)nh

∫
fdµφ(t) =

∑

x∈Z/`nhZ

f(x)φ(ζx
nht) ∈ OGm,1/B,

and then,
∫

fdµφ is its evaluation at t = 1:
∫

fdµφ(1). We then have
for a primitive Dirichlet character χ : (Z/`nhZ)× → B×

(`a)nh

∫
χdφ(t) =

∑

x

∑

m

χ(x)a(m,φ)(ζx
nht)

m

=
∑

m


 ∑

x∈Z/`nhZ

χ(x)ζmx
nh


 tm = G(χ)

∑

m

χ−1(m)a(m,φ)tm,

where G(χ) is the Gauss sum: G(χ) =
∑

x∈Z/`nZ χ(x)ζx 6= 0.

1.4. Evaluation formula. Applying the computation in the previous
section to φ = Φλ =

∑∞
m=0 λ(m)tm and evaluating the result at t = 1,

we find∫
χdµΦ = (`λ(`))−nG(χ)Φχ−1λ(1) = (`λ(`))−nG(χ)L(0, χ−1λ).

Since χ 6= 1 is supported on Z`
×, we may restrict dµΦ to Z`

×.
Since any character χ : Z`

× → µ`∞ factors through Γ = Z`
×/µ`−1,

we want to have a measure ϕ supported on Γ = Z`
×/µ`−1 so that we

have ∫

Γ

χdϕ =

∫

Z`
×

χdµΦ for all character χ of Γ.

The measure ϕ is not associated to a rational function like Φ, but if
we allow functions on µ`∞ , ϕ is associated to a function Ψ close to Φ.
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Noting that µ`−1 ⊂ Z` acts such functions by φ(ζ) 7→ φ(ζs) (s ∈ Z`),
we find that ϕ = dµΨ for Ψ given by

Ψ(ζ) =
∑

ε∈µ`−1

Φ(ζε) =
∑

ε∈µ`−1/{±1}

(Φ(ζε) + Φ(ζ−ε)) if ` - N .

1.5. Zariski density. We now assume that B = Fp. We admit the
following result in [Si1]:

Theorem 1.3 (Sinnott). Let Ξ ⊂ µ`∞(Fp) be an infinite set. Let F
be the Fp-algebra of functions on Ξ with values in Fp, and define an
integral domain F0 = F/N for the prime ideal N formed by functions
vanishing at almost all ζ ∈ Ξ (except finitely many ζ). If a1, . . . , ar ∈ Z`

are linearly independent over Z, the algebra homomorphism from the
affine ring R0 = Fp[y1, y

−1
1 . . . , yr, y

−1
r ] of Gr

m into F0 sending yj to an
element of F0 given by ζ 7→ ζaj for j = 1, 2, . . . , r is injective.

To conclude the assertion of (Step4), we need to make the following
variable change: Let A be the additive subgroup of Z` generated by
µ`−1 and take an Z-basis I = {a1, . . . , ar} of A. Take a complete set of
representative ε1, . . . , εn of µ`−1/{±1} and write εj =

∑
i cijai. Write

Gµ`−1/{±1}
m = Spec(R) for R = Fp[t1, t

−1
1 , . . . , tn, t

−1
n ] (tj corresponds

to the component indexed by εj). Consider the ring homomorphism
R→ R0 sending tj to

∏
i y

cij

i . This induces a morphism ι : Y = GI
m →

Gµ`−1/{±1}
m of algebraic groups, and for an infinite subset Ξ ⊂ µ`∞ ,

Ξ̃ = {(ζε1, . . . , ζεn)|ζ ∈ Ξ} is the image of {(ζa1, . . . , ζan)|ζ ∈ Ξ} ⊂ Y
which is dense in Y by the above theorem. Then in the following
section, we conclude the assertion of (Step4) from

Lemma 1.4. Let the notation be as above. Then a relation of the form:

(∗) (P1(t1) + · · ·+ Pn(tn)) ◦ ι = 0

in R for Pj(z) ∈ Fp[z, z−1] can only occur if Pj(z) ∈ Fp for all j.

Proof. Let R0 = Fp[y1, y
−1
1 , . . . , yr, y

−1
r ]. Restrict P1(t1) + · · · + Pn(tn)

to Y and look at
∑

i Pi ◦ ι ∈ R0. Since aj is a basis of A, Pi ◦ ι(y)
and Pj ◦ ι(y) for i 6= j do not contain common monomials of yj. Since
monomials of yj are all linearly independent over Fp, we find that the
relation (∗) implies Pi(z) ∈ Fp for all i. �

1.6. Application of Zariski density. We first assume that
∫
Γ
χdϕ =

0 (that is, L(0, χ−1λ) ≡ 0 mod P) for all χ : Γ → µ`∞ . Then by
orthogonality relation of characters, we find Ψ(ζ) = 0 for all ζ ∈ µ`∞ .
Thus we find that Φ(tε) + Φ(t−ε) ∈ Fp, which is impossible by the
t-expansion of Φ.
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Now we assume a weaker condition that we have an infinite sequence
of characters {χj}j of order `nj with

∫
Γ
χjdϕ = 0, which implies by

variable change:
∫
Γ
χj(x)dϕ(ax) = 0.

Exercise 1.5. For any field k of characteristic different from `, prove
the following formula for a primitive `n-th root of unity ζn with n ≥ 2
not in k: Trk[ζn]/k(ζ

x
n) 6= 0⇔ ζx

n ∈ k.

We assume that λ has values in F×
q (q = pf ). Then applying the

Frobenius automorphism F (x) = xq, we find for χ = χj and n = nj

0 =

(∫

Γ

χ(x)dϕ(ax)

)qn

=

(∑

u

χ(u)Ψ(ζau
n )

)qn

=
∑

u

χqn

(u)Ψ(ζauqn

n ) = χqn

(qn)−1

∫

Γ

χqn

dϕ(ax)

for all n. Thus taking the trace of
∫
Γ
χ(x)dϕ(ax) from the field Fq[χj]

generated by the values of χj to Fq[µ`], we find that
∑

u∈χ−1
j (Fq [µ`])

χj(u)Ψ(ζau
nj

) = 0

for all a ∈ Γ/Γ`nj
. Writing the order of the `–primary part of (Fq[µ`])

×

as `m, note that the above sum only involves u ∈ Γ`nj−m

/Γ`nj
. Tak-

ing nj so that nj ≥ 2m, we can identify the multiplicative group

Γ`nj−m

/Γ`nj
with the additive one Z/`mZ by Z/`mZ 3 v 7→ 1+`nj−mv =

u. We can then write χj(u) = ζ
bjv
m for bj ∈ (Z/`mZ)× and ζau

n = ζa
nζv

m.
Since {χj} is infinite, we may assume that bj is a constant b. We have
for any a ∈ Z×

`∑

v mod `m

ζbv
m Ψ(ζa

nj
ζv
m) =

∑

v mod `m

ζbv
m Ψ|ζv

m(ζa
nj

) = 0,

where for f ∈ Fp(Gm), f |x ∈ Fp(Gm) is defined by f |x(t) = f(tx) for

x ∈ Gm(Fp). Since π(Ξ) for Ξ =
⋃

j µ×
`
nj is still dense in Y , applying

Lemma 1.4 to Pj(z) = Φ′
j(z)+Φ′

j(
1
z
) for Φ′

j(z) =
∑

v mod `n0 ζav
n0

Φ|ζn0(z)

on Gm = Spec(Fp[z, z−1]), we conclude Pj(z) ∈ Fp, whose Taylor ex-
pansion at z = 1 can be easily seen to be nonconstant by computation.
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2. Modular Curves

We create a circumstance very similar to the pair (Gm, µ`∞) replacing
Gm by modular curves and µ`∞ by CM-points of modular curves. This
new setting allows us to prove nonvanishing modulo p of Hecke L-values
in the following sections. We write G(A) = GL2(A).

2.1. A sketch of the theory of modular curves. We study clas-
sification problem of elliptic curves E/A over a ring A (which is an
algebra over a base ring B). The abelian group E has the identity
section 0E : Spec(A) ↪→ E, and ΩE/A is a locally free sheaf of rank 1.
In particular, if it is free, we have a unique generator ω ∈ H0(E,ΩE/A)
such that ΩE/A = OEω. Since E is projective, H0(E,OE) = A, ω is
uniquely determined up to multiplication by units in A×.

We consider the following moduli functor of level Γ(N),

EΓ(N),ζ(A) =
[
(E,φN : (Z/NZ)2 ∼= E[N ])

∣∣〈φN (1, 0), φN (0, 1)〉 = ζ
]
,

for all Z[ 1
N

, ζ]-algebras A, where ζ is a generator of µN . Here 〈·, ·〉 is
the Weil pairing. We know classically EΓ(N),ζ(C) ∼= Γ(N)\H. If we
remove the contribution upon ζ and consider the functors PΓ(N)(A) =[
(E,ω, φN)/A

]
and EΓ(N)(A) =

[
(E,φN )/A

]
defined on the category of

Z[ 1
N

]-algebras, we have PΓ(N) =
⊔

ζ PΓ(N),ζ and EΓ(N) =
⊔

ζ EΓ(N),ζ,
and these functors are represented by a geometrically non-connected
scheme MΓ(N) and Y (N) defined over Z[ 1

N
] if N ≥ 3. Note that

Y (N)/Z[ 1
N

,ζN ] =
⊔

ζ∈µ×
N

Yζ(N) with Yζ(N)(C) ∼= Γ(N)\H.

We can let a constant group α ∈ SL2(Z/NZ) act on Yζ(N) (and
hence on Xζ(N)) by (E,φ) 7→ (E,φ◦α). Since 〈φ◦α(1, 0), φ◦α(0, 1)〉 =

ζ
det(α)
N , the same action of α ∈ G(Z/NZ) induces an automorphism of

Y (N) (and X(N)) regarded as schemes over Z[ 1
N

] (not over Z[ 1
N

, ζN ]),

which coincides with the Galois action ζN 7→ ζ
det(α)
N on Z[ζN ]. By

taking the limit Y = lim←−N
Y (N) (which is a pro-scheme defined over

Q). G(Ẑ) = lim←−N
G(Z/NZ) acts on Y , and SL2(Ẑ) preserves the

connected component Yζ∞ = lim←−N
YζN

(N).

A remarkable fact Shimura found is that this action of G(Ẑ) can be
extended to the finite adele group G(A(∞)) (see [IAT] Chapter 6). An
interpretation by Deligne of this fact is fascinating (see [PAF] 4.2.1): To
explain Deligne’s idea, we define the Tate module T (E) = lim←−N

E[N ]
for an elliptic curve E/A for a Q-algebra A. Strictly speaking, tak-
ing a geometric point s = Spec(k) ∈ Spec(A) (for an algebraically
closed field k) in each connected component of Spec(A), we are think-

ing of the Ẑ-module T (E) = lim←−N
E[N ](k) (the choice of s does not
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matter, and the module structure over π1(Spec(A)) of T (E) is de-
termined up to inner conjugation of the algebraic fundamental group

π1(Spec(A)); see [PAF] Chapter 4, Appendix). Then T (E) ∼= Ẑ2 and
V (E) = T (E) ⊗Z A(∞) ∼= (A(∞))2. Deligne realized that Y represents
the following functor defined over Q-ALG:

E(∞)(A) = {(E, η : (A(∞))2 ∼= V (E))/A}/isogenies,

where an isogeny φ : E → E′ is a morphism of group schemes with
finite kernel (so dominant). Here A(∞) is the finite adele ring. Then
g ∈ G(A) sends a point (E, η)/A ∈ E(∞)(A) to (E, η ◦ g(∞))/A for the

projection g(∞) of g to A(∞).
Take the prime-to-p part Y (p) = lim←−p-N

Y (N). Here N runs over

all positive integers prime to p. Then Y (p) classifies (E, η(p))/A up
to prime-to-p isogenies for Z(p)-algebras A (Z(p) = Q ∩ Zp). Here

putting V (p)(E) = T (E)⊗Z A(p∞), η(p) is the prime-to–p level structure
η(p) : (A(p∞))2 ∼= V (p)(E). In other words, Y (p) represents the following
functor defined over Z(p)-ALG:

E(p)(A) = {(E, η : (A(p∞))2 ∼= V (p)(E))/A}/prime-to-p isogenies,

where an isogeny φ is prime to p if the order of the kernel of φ is prime
to all primes in p. This pro-scheme Y (p) is defined over Z(p); so, its

restriction to Fp-algebras Y
(p)

/Fp
is a characteristic Fp-scheme classifying

(E, η(p))/A for Fp-algebras A. On Y (p), again G(A(p)) acts.
If we have a prime-to-p non-central endomorphism α : E → E,

then E has complex multiplication by M = Q[α], and we can write
α◦η = η◦ρ(α) for ρ(α) ∈ G(A(∞)). Thus if x = (E, η) ∈ Y (A), we find
that ρ(α)(x) = x. For any elliptic curve E, we have Q ⊂ End(E)⊗Z Q;
so, the central element ξ ∈ Q× ⊂ G(A(∞)) acts trivially on Y . Thus,
x = (E, η) has CM by an imaginary quadratic field M if and only if
M×/Q× is the stabilizer of x in Aut(Y ).

Pick an elliptic curve E = X with complex multiplication by Rn =
Z+`nR, where R is the integer ring of M . We suppose that p splits into

(p) = pp in Rn. Consider W = W (Fp) inside Cp = Q̂p and its field of

fractions K. We putW = W ∩Q which is a strict henselization of Z(p).
We suppose that p = Rn∩mW and X[p∞] is étale overW. Then we can
pick a level p-structure ηp : µp∞

∼= X[p∞]. Identify X(C) = C/a for an
Rn-ideal a and fix a base w1, w2 of a ⊗Z (Zp × A(p∞)), which induces
prime-to–p level structure η(p) : (A(p∞))2 ∼= a⊗Z A(p∞) = V (p)(X). We
assume that ρ(α)w1,p = αw1,p for Rn ↪→ Rp. Since α ∈ R×

(p) induces an

isogeny α : X → X sending αη(p) = η(p)ρ(α), the point x = (X, η(p))
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is fixed by ρ(α). Consider the formal completion Ŷ = Ŷx of Y
(p)

/W along

x ∈ Y (p)(Fp). Then by the universality of Y , Ŷ satisfies

Ŷ (A) ∼= Ê(A),

where A runs through p-profinite W -algebras with A/mA = W/mW =

Fp and Ê(A) =
[
E/A

∣∣E ⊗A Fp = X/Fp

]
. Indeed Ŷ classifies (E, η(p))/A

with (E, η
(p)
E )×AFp = (X, η(p)), but η(p) uniquely determines η

(p)
E ; so, we

can drop the datum of the level structure. By the deformation theory

of Serre-Tate, Ŷ ∼= Ĝm canonically. This goes as follows. First E/A ∈
Ê(A) is determined by the extension E[p∞]◦ ↪→ E[p∞] � E[p∞]et of
the Barsotti-Tate groups. Such an extension over A is classified by

Hom(E[p∞]et, E[p∞]◦) ∼= Hom(Qp/Zp/A, µp∞/A) = lim←−
n

µpn(A) = Ĝm(A).

For this identification, we need to fix ηp : µp∞
∼= X[p∞] and its dual

X[p∞] ∼= Qp/Zp. Since ρ(α) fix x, it acts on Ŷ .

Lemma 2.1. Identifying Ŷ with Ĝm = Spf(lim←−n
W [t, t−1]/(t−1)n), we

have ρ(α)(t) = tα1−c
for complex conjugation c.

Let ζ ∈ Ŷ (W [µpn]) be a p-power root of unity. Then if α ≡ αc

mod pn, α1−c ≡ 1 mod pn we have ζα1−c
= ζ. This shows that the

point ζ ∈ Ŷ carries an elliptic curve Xζ with an isogeny α ∈ End(Xζ)

inducing t 7→ tα1−c
on Ŷ . Thus Xζ has complex multiplication by

R′
n = Z + pnR. If X is actually defined over Fph, we have the relative

Frobenius map φ = α ∈ End(X) of degree ph. Then the relative Frobe-

nius map F of Ŷ/F
ph

can be written as ρ(α). We then have ρ(αn)(ζ) = 1

for ζ ∈ µpnh, and αn : Xζ → X is an isogeny of degree pnh. In other
words, we have

{Xζ} = {X/C|C 6= X[pnh]◦: cyclic subgroups of X of order pnh}.
By this, we can see that the modular Hecke operator U(p) coincides
with the Gm Hecke operator U(p).
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3. Nonvanishing modulo p of Hecke L–values

In 1899, Hurwitz studied an analogue of the Riemann zeta function:

L(4k) =
∑

a+bi∈Z[i]−{0}

1

(a + bi)4k

of Gaussian integers Z[i] and showed that for positive integer k,

L(4k)

Ω4k
∈ Q (Ω = 2

∫ 1

0

dx√
1− x4

=

∫

γ

dx

y
: period of the lemniscate).

Nowadays, we regard this value as a special value of a Hecke L-function:

L(s, λ) =
∑

a

λ(a)N(a)−s of the Gaussian field Q[i].

Here λ is a Hecke ideal character of Q[i] with λ((α)) = α−4k and
L(4k) = 4L(0, λ).

We shall give a sketch of a proof of non-vanishing modulo p of al-
most all Hecke L–values for general imaginary quadratic fields M =
Q[
√
−D]. The Hurwitz formulation is modular: For any lattice L =

Zw1 + Zw2 ⊂ C, we can think about

E2k(L) =
1

2

∑

aw1+bw2∈L

1

(aw1 + bw2)2k
(Eisenstein series),

which is a function of lattices satisfying E2k(αL) = α−2kE2k(L). The
quotient C/L gives rise to an elliptic curve X(L) ⊂ P2 by Weierstrass
theory. Since X(L) has a unique nowhere vanishing differential du for
the variable u of C and we can recover out of (X(L), du) the lattice L
as {

∫
γ
du|γ ∈ H1(E, Z)}, we can think of E2k as a function of the pairs

(X,ω) of an elliptic curve X and a nowhere vanishing differential ω sat-
isfying E2k(E,αω) = α−2kE2k(E,ω). Note that E4(E,ω) = 1

120
g2(E,ω)

and E6(E,ω) = 1
280

g3(E,ω). More generally, E2k is a rational isobaric
polynomial of g2 and g3. Thus E2k is a modular form f of weight 2k.

Write R for the integer ring of M . We assume that p splits into
p = pp in R so that p gives rise to a p–adic place ip : Q ↪→ Qp. We
write W for the ring of Witt vectors with coefficients in an algebraic
closure Fp of the finite field Fp and regard it as a valuation subring
of Cp ⊃ Qp (in other words, W is the closure in Cp of the p-adic
integer ring of the maximal unramified extension of Qp). We define
W =Wp = i−1

p (W ) with maximal ideal P. Important facts are

(E1) For a lattice a ⊂ R prime to p (a is prime to p if [R : a] is prime
to p), X(a) is p-integral defined over W ⊂ Q;
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(E2) E2k is defined over Q (actually over Z(p) for almost all k) by the
q-expansion principle;

(E3) Let ω = Ωdu be a generator of H0(X(R),ΩX(R)/W) (which
means that H0(X(a),ΩX(a)/W) = Wω, because a is prime to
p), in other words, Ω =

∫
γ
ω for a 1-cycle γ with R(p)γ =

H1(X(a), Z(p)). Then E2k(X(a),ω)
N(a)2kλ(a)

is the partial L–value of the

ideal class of a−1:

E2k(X(a), ω)

N(a)2kλ(a)
=

E2k(X(a),Ωdu)

N(a)2kλ(a)
=

E2k(X(a), du)

Ω2kN(a)2kλ(a)
=

La−1(2k, λ)

Ω2k
∈ Q,

because

E2k(X(a), du)

N(a)2kλ(a)
= La−1(2k, λ) =

∑

b∼a−1

λ(b)N(b)−2k

for a Hecke character λ with λ((α)) = α−2k.

In order to get p-integrality and an U(`)-eigenform, we modify the
Eisenstein series E2k into E2k(z) = E2k(z) − E2k(`z). Then we have
E2k(X(a), ω) ∈ W.

Fix a prime ` 6= p. A character χ : {ideals of M prime to `} → C×

is called `-anticyclotomic if χ(ac) = χ(a)−1 for complex conjugation c
and χ((α)) = 1 if α ≡ 1 mod `n for some n� 0.

As described above, which is a result of Hurwitz, Damerell and Weil
combined, that

(2k − 1)!L(`)(0, λχ)

Ω2k
∈ W for `-anticyclotomic χ,

where L(`)(0, λχ) =
{∏

l|`(1− λχ(l))
}

L(0, λχ). Then we have

Theorem 3.1. Fix a prime ` 6= p. We have (2k−1)!L(`)(0,λχ)
Ω2k 6≡ 0 mod P

except for finitely many `-anticyclotomic characters χ.

Here we shall give a sketch of the proof of this special case in the
following couple of sections as outlined in the case of (Gm, µ`∞). The
result in the above imaginary quadratic cases are also treated by Finis
(see [Fi]) under different assumptions (see also Vatsal’s papers [V] and
[V1] for related topics).

3.1. Modular forms of Γ0(`
n). We take the following moduli theo-

retic definition of modular form on Γ0(`
n). A level Γ0(`

n)-structure on
(E,ω)/B (for a base Z(p)-algebra B) is an étale subgroup C ⊂ E[`n] de-
fined over B étale locally isomorphic to Z/`nZ. Then f ∈ Gk(Γ0(`

n);B)
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is a functorial morphism for all B-algebras A,

PΓ0(`n)(A) =
[
(E,C, ω)/A

]
→ A1(A) = A

satisfying the following conditions: Regarding f as a function of iso-
morphism classes of (E,C, ω)/A with f((E,C, ω)/A) ∈ A satisfying

(G1) f((E,C, aω)/A) = a−kf((E,C, ω)/A) for a ∈ A× = Gm(A);
(G2) If ρ : A→ A′ is a morphism of B-algebras, then we have

f((E,C, ω)/A ×A A′) = ρ(f((E,C, ω)/A));

(G3) The function has finite q-expansion at the Tate curves with level
Γ0(`

n)-structure.

3.2. Measure associated to a Hecke eigenform. The first step
towards the proof of the theorem is a construction of a measure inter-
polating values of a Hecke eigenform at CM points. We apply this to
Eisenstein series E2k.

Take the base ring A to be Fp =W/P. We add a datum of a cyclic
`-subgroup to the definition of modular forms. A modular form g on
Γ0(`) assigns its value g(E,C, ω) ∈ A to each isomorphism class of a
triple (E,C, ω)/A defined over an Fp–algebra A, where C/A is a cyclic
subgroup of order `.

Summing over `-cyclic subgroups C ′ of E different from C, the Hecke
operator U(`) is defined by

(3.1) g|U(`) =
1

`

∑

C′

g(E/C ′, C + C ′/C ′, π∗ω),

where π is the étale projection π : E → E/C ′. We could have started
modular forms over A = Wp ∩ W`. Then each E has C giving the
connected component over A, and under this circumstance, modular
U(`) coincides with the Gm-version of U(`) as already seen.

If we write the standard q-expansion of g at ∞ g(q) =
∑

n a(n, g)qn,
we have a(n, g|U(`)) = a(n`, g).

Fix a modular form f on Γ0(`) of weight 2k with f |U(`) = a(`)f .
We again rediscover

(UL) a(n, f |U(`)) = a(n`, f) = a(`) · a(n, f).

Hereafter we simply write a for a(`). Fix an imaginary quadratic
field M = Q[

√
−D] ⊂ Q in which p splits: (p) = pp. Consider the

order Rn := Z + `nR for the integer ring R of M . We write

Cln :=
projective fractional Rn-ideals

principal Rn-ideals
= M×\(M (∞)

A )×/(A(∞))×R̂×
n ,
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which is the ring class group of Rn. We define Cl∞ = lim←−n
Cln for the

projection πm+n,n : Cln+m � Cln taking a to aRn. The group Cl∞ is
isomorphic to the Galois group of the maximal anticyclotomic abelian
extension of M unramified outside `.

As before, X(a)/W is the CM elliptic curve with X(a)(C) = C/a. We

fix a basis w1, w2 of R̂ so that its p-component is given by idempotent
ep of Rp and ep of Rp. At `, write R` = Z` + Z`

√
d with d ∈ Z`

choosing d ∈ Z×
` if R`/Z` is unramified. If [a] ∈ Cln is a proper

Rn-ideal, we may choose a so that a` = (Z`, Z`)
(

1 j/`n

0 1

)
αn

t(1,
√

d) for
αn = ( 1 0

0 `n ) and some integer j unique modulo `n. Then we take a basis
t(w1(a), w2(a)) of â as follows: At `, it is given by αn

t(1,
√

d) and outside

`, (w1(a)(`), w2(a)(`)) = (aw
(`)
1 , aw

(`)
2 ) for a ∈ (M

(∞)
A )× with aR = aR.

Out of this, we have a unique x(a) = (X(a), η(a)) ∈ Y/I0(`) with

I0(`) = {x ∈ GL2(Ẑ)|(x` mod `) ∈ B(F`)} for the upper triangular
Borel subgroup B ⊂ G. Moreover, we have

(3.2) ρ(α)(x(a)) = x(αa) for all α ∈ R×
(`),

and

(3.3) π−1
n,n−1([a0]) =

{(
1 j

`
0 1

)
α1(x(a0)) for j ∈ Z/`Z

}
for n ≥ 2.

We choose the Néron differential ω(R) so that ΩX(R)/W = Wω(R).
Since X(a) is étale isogenous to X(R), ω(R) induces a differential ω(a)
on X(a) with ΩX(a)/W = Wω(a). Since a` = a`Rn,` for a` ∈ M×

` , we
have a cyclic subgroup C(a) := a`(Rn−1/Rn) of X(a). This subgroup
is η(a)(`−1Zp/Zp ⊕ 0). The λ-twisted value

f([a]) = (a`1−2k)−nλ(a)−1f(X(a), C(a), ω(a))

depends only on the ideal class [a] in Cln.
For a given projective Rn–ideal a, there are exactly ` projective Rn+1-

ideals ai with ai/a ∼= F` (⇔ X(ai) = X(a)/C ′ for some C ′ of cyclic of
order ` not equal to C(a)), and we find from (3.1) and f |U(`) = af

(3.4) f([a]) =
∑̀

i=1

f([ai]).

We define a measure df on Cl∞ as follows: if φ factors through Cln,∫

Cl∞

φdf =
∑

[a]∈Cln

φ(a)f([a]).

By the distribution relation (3.4), this is a well defined independently
of the choice of n. Let E = E2k(z) − E2k(`z) be the Eisenstein series
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of weight k on Γ0(`) with E|U(`) = `2k−1E and

(3.5)

∫
χdE =

(2k − 1)!L(`)(0, χ−1λ)

Ω2k
.

3.3. Density of CM points. Each integral R–ideal A of M prime
to ` gives rise to a unique proper Rn–ideal an = A ∩ Rn, and the
limit [A] = lim←−n

[an] is a well defined element of Cl∞. We extend this

construction to fractional ideals by [AB−1] := [A][B]−1. Thus the ideal
group I of fractional ideals of R (prime to `) is a subgroup of Cl∞.

If [a] is an ideal class in Cln, then x[a] = (X(a), C(a))/Fp
gives a

unique closed point x[a] of the modular curve X0(`). Let n : 0 < n1 <
n2 < · · · < nj < · · · be an infinite sequence of integers. Define

Ξ = Ξn =
{
[a]
∣∣[a] ∈ Ker(πnj,n1) for j = 1, 2, . . .

}

and put ΞQ
n =

{
(x[δa])δ∈Q ∈ X0(`)

Q
∣∣[a] ∈ Ξ

}
. for a subset Q ⊂ Cl∞,

where X0(`)
Q =

∏
δ∈Q X0(`) and δa is the product of π∞,nj(δ) and [a]

in Clnj . By the same argument as in the Dirichlet character case (using
the q-expansion in place of the t-expansion), the desired result follows
from

Theorem 3.2 (density). If Q is finite and injects into Cl∞/I, the
subset ΞQ

n is Zariski-dense in X0(`)
Q
/Fp

.

Thus if
∑

δ fδ([δa]) = 0 for all a ∈ Ξ for (fδ)δ∈Q with modular form
fδ on X0(N), the individual fδ vanishes.

To relate the theorem to Chai’s Hecke orbit conjecture, write Q =
(δ1, . . . , δh). we take the CM point xj = (X(a), η(p)) ∈ Y (p). Let
ρ : R×

(p) → Aut(Y (p)) given by αη(p) = η(p)ρ(α). We let T = R(p)/Z×
(p)

act on V h by
∏

j ρ. This action fix x = (x, · · · , x). Theorem 3.2 in turn
follows from the following theorem proving a version of Chai’s Hecke
orbit conjecture:

Theorem 3.3 (C.-L. Chai). Let T acts on V/Fp
= (Y (p))m diagonally.

Let Z be an irreducible subvariety Z of V containing a fixed point of
T . If for a subgroup T ⊂ T whose p-adic closure is open in R×

p /Z×
p

leaves Z stable, then Z is a Shimura subvariety of V .

We admit this theorem basically proven in [C2] Section 8 (see also
[H06a] Corollary 3.13). In [C2] Section 8, a weakly Tate-linear subvari-
ety of V is proved to be a Shimura subvariety. In [H06a], the subvariety
stable under T is proved to be weakly Tate-linear. See these papers for
the definition of Tate-linearity.
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After permutation of factors Y (p), any nontrivial Shimura subvariety
of V is contained in (Y (p))m−2 ×∆g,g′ for g, g′ ∈ G(A(p∞)), where

∆g,g′ = {(z · g, z · g′)|z ∈ Y (p)} z·g 7→z
= {(z, z · g−1g′)|z ∈ Y (p)}.

Note here the action of G(A(p∞)) on Y (p) is a right action. Here we call
a Shimura subvariety trivial if it is in (Y (p))m−1 × x for a CM point x.
Since Z contains a fixed point (x1, . . . , xm) of T , the elliptic curves Xi

sitting over xi are isogenous and have complex multiplication by M ;
so, they are isogenous. Thus, moving Z by an action of G(A(p∞))m, we
may assume that the fixed point is (x, x, . . . , x). Since ∆g,g′ contains
a fixed point (x, x). Writing X for the elliptic curve sitting over x,
g−1g′ induces an endomorphism of X; so, g−1g′ = α ∈ M×. Now we
prove Theorem 3.2. Let m = h and π : V → X0(`)

Q be the projection.
Let Z1 be the Zariski closure of π−1(Ξ). Since the action of α ∈ T
permutes points in π−1(ΞQ) if α ≡ 1 mod `n for n = n1 (by (3.2)),
the T1 = {α ∈ T |α ≡ 1 mod `n} leaves Z1 stable. Take an irreducible
component Z of Z1 containing (x(Rn), . . . , x(Rn)). Then the stabilizer
of T1 of Z is of finite index in T1 whose p-adic closure in R×

p /Z×
p is an

open subgroup. Thus we can apply Chai’s theorem. After permuting
the factors of V , Z ⊂ (Y (p))h−2 × ∆g,g′. Thus δh−1/δh = g−1g′ = α

in Aut(Ŷ
(p)
x ). Since Ŷ

(p)
x
∼= Ĝm = Spf( ̂Zp[t, t−1]) and Aut(Ĝm) = Z×

p

via Z×
p 3 α 7→ (t 7→ tα) ∈ Aut(Ĝm), this implies δh−1I = δhI, a

contradiction. Thus Z = V and hence Theorem 3.2 follows.

3.4. Nonvanishing of L–values modulo p. If
∫

χdE = 0 for all

characters χ : Cl∞ → F×
p , then by orthogonality relation, we find

E([a]) = 0 for all a ∈ Cln for all n. Then a trivial form of the density
theorem applied to the single copy X0(`) tells us that the individual
E has to vanish on X0(`), which is a contradiction because the q-
expansion of E does not vanish modulo p.

We want to get the same type of contradiction only assuming the
vanishing of the integral for infinitely many χ. The technique of Sinnott
still allows us to do this under the stronger form of the density theorem
if the measure were supported by Z`-torsion free group (instead of
Cl∞). Thus we want to have a measure on a torsion-free group still
interpolating E([a]).

We decompose Cl∞ = Γ × ∆ with a torsion-free subgroup Γ ∼= Z`

and a finite group ∆. We project the measure dE down to Γ and
write it dEΓ. To make explicit this measure dEΓ, we choose a complete
representative set Q for Cl∞/Γ ∼= ∆ made of split primes q. We write
q = N(q) which is a rational prime. Pick q ∈ Q, and write (q) =
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qq′. At q, we choose w1,q and w2,q for the idempotent of Rq and Rq′ ,
respectively. Then for the degeneration map f |[q](z) = q2k−1f(qz),
f |[q]([a]) = f([aq−1]).

For simplicity, we assume that M ramifies at only one prime (to
avoid appearance of nontrivial ambiguous class). Then the projection
{[q]Γ}q∈Q to Γ is independent modulo I.

Then by computation, we get
∫

Γ

φ(x)dEΓ(x) =
∑

q∈Q

∫

Γ

φ([q]−1
Γ x)d(E|[q])(x).

We suppose a weaker condition that we have a infinitely many char-
acters {χj : Γ → µ`∞}j=1,2,...,∞ with vanishing integral

∫
Γ
χjdEΓ = 0.

Take a sequence of integers nj so that χj factors through Clnj . By a
technique invented by Sinnott, from the stronger form of the density
theorem for the sequence {nj}j , we can conclude the vanishing of E|[q]
on the q-th copy X0(`) if for each σ ∈ Gal(Fp/Fq) (if λ mod P has
values in F×

q ), we have

(S)

∫

Γ

χσdEΓ = 0⇔
∫

Γ

χdEΓ = 0.

This assertion (S) follows from the reciprocity law at the CM point x(a)
in the following way: The reciprocity law (of Kronecker-Shimura; see
[PAF] 2.1.4) tells us that for the Frobenius map Φ(x) = xp for x ∈ Fp,

Φ(E([a])) = E([p−1a]),

where p = pp and p corresponds to ιp. Then we have (for positive
integer m)

Φm(

∫

Cl∞

χdEΓ) = χσ(pm)

∫

Cl∞

χσdEΓ,

which shows (S), and we get the theorem.
Let us give slightly more details of the argument. By our assumption,

we have an infinite sequence of characters {χj : Γ/Γ`
nj → µ`∞ (Fp)}j

of order `nj with
∫
Γ
χjdEΓ = 0, which implies by variable change:∫

Γ
χj(x)dEΓ(ax) = 0 for any a ∈ Γ. Recall that λ has values in F×

q

(for q = pr). By (S), taking the trace of
∫

Γ
χ(x)dEΓ(ax) from the field

Fq[χj] generated by the values of χj to Fq[µ`], we find that, putting
Ψ(x) =

∑
q∈Q E|[q]([q]Γx),

∑

u∈χ−1
j (Fq [µ`])

χj(u)Ψ(au) = 0
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for all a ∈ Γ/Γ`
nj

. Writing the order of the `–primary part of (Fq[µ`])
×

as `m, note that the above sum only involves u ∈ Γ`nj−m

/Γ`nj
. Tak-

ing nj so that nj ≥ 2m, we can identify the multiplicative group

Γ`
nj−m

/Γ`
nj

with the additive one Z/`mZ by Z/`mZ 3 v 7→ 1+`nj−mv =

u, and u[a] =
(

1 v/`m

0 1

)
[a] by (3.3). We can then write χj(u) = ζ

bjv
m for

bj ∈ (Z/`mZ)× and ζau
n = ζa

nζv
m. Since {χj} is infinite, we may assume

that bj is a constant b. We have for any a ∈ Γ, by (3.3)
∑

v mod `m

ζbv
m Ψ(au) =

∑

v mod `m

ζbv
m Ψ|

(
1 v/`m

0 1

)
(a) = 0.

Since π(Ξ) is still dense in Y , by the density theorem, we have

Eb =
∑

v mod `m

ζbv
m E|[q]|

(
1 v/`m

0 1

)
= 0.

By computing q-expansion, the q-expansion coefficient a(n,Eb) of Eb

for qn for n ≡ −b mod `m is equal to `ma(n,E|[q]), and we can easily
find such n with a(n,E|[q]) 6≡ 0 mod p, a contradiction, which proves
the desired assertion.
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