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Introduction

These are lecture notes for my course at the Arizona Winter School. The style is some-
what informal and I have aimed to convey the key ideas without many technical details. 1

The theme of these lectures will be period relations between modular forms. Two reasons
(amongst others) why one might be interested in periods are:

• Periods occur in various special value conjectures like the Birch-Swinnerton-Dyer,
and its generalization, the Bloch-Kato conjecture.

During the preparation of this article, the author was supported partially by NSF grants DMS-1015173
and DMS-0854900.

1The notes have not been seriously proofread as yet, and are also somewhat incomplete at this point,
especially in Sections 7 and 8. On the other hand, the material relevant to the student projects is all there.
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2 KARTIK PRASANNA

• Period relations are often a manifestation of the Hodge/Tate conjectures. For exam-
ple, the Hodge conjecture predicts that an isomorphism of rational Hodge structures
- which can be viewed as a collection of period relations - comes from an algebraic
cycle.

The theory of Shimura varieties and automorphic forms provides a fascinating testing
ground for the conjectures mentioned above, since the functoriality conjectures of Langlands
often predict relations between automorphic forms on different Shimura varieties. In many
instances, one then expects an algebraic cycle to be lurking around. In no case, beyond
that of a product of two (Shimura) curves, has the existence of such a cycle ever been
demonstrated in general. In that case too, there is no canonical construction of such a
cycle; rather its existence follows from a deep general theorem of Faltings that works for any
product of curves. One might optimistically hope that a study of period relations may lead
ultimately to such a construction or a better understanding of the Tate conjecture in this
setting.

The study of period relations for automorphic forms was pioneered by Shimura, who

showed in many instances the existence of relations up to factors in Q
×

, and made a general
conjecture relating relating periods on Hilbert modular varieties and their compact analogs,
the so-called quaternionic modular varieties. There is a somewhat weaker conjecture, that
relates quadratic periods (which as the name suggests are a product of two periods) which
may be interpreted (up to algebraic factors) as Petersson inner products. It is this weaker
conjecture that we will focus on in these notes. In fact, the conjecture itself was proven by
Michael Harris [8] under a certain technical condition that we will describe later. 2 However,
we shall be interested in a more precise formulation of this conjecture that works not just
up to algebraic factors but up to factors that are units (or at least p-adic units for a fixed
prime p).

The motivation for this more precise formulation comes from another venerable tradition
in the theory of modular forms, namely the study of congruences, which in its modern
formulation, due to Hida, Ribet and ultimately in the work of Wiles and Taylor-Wiles has
been a key ingredient in the some of the most important developments in algebraic number
theory in recent years. We will begin by discussing this motivation.

1. Modular forms, congruences and the adjoint L-function

We summarize various well known facts about classical modular forms. Let N be a positive
integer, k ≥ 2 an integer and Sk(Γ0(N)) the space of cusp forms of weight k on Γ0(N). This
space admits an action by a Hecke algebra Tk,N , generated by Hecke operators Tp for p - N .
We let f ∈ Sk(Γ0(N)) be a newform in Sk(Γ0(N)) i.e. it is an eigenform for Tk,N and the
corresponding system of eigenvalues (for p - N) does not appear in Sk(Γ0(M)) for any M

2And that can now be removed as a consequence of the ideas described in Sec. 8.
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strictly dividing N . We will assume that f is normalized i.e. has a q-expansion

f(z) =
∑
n≥1

anq
n, where q := e2πinz and a1 = 1.

The coefficients ap = ap(f) for p prime are related to the Hecke eigenvalues by

Tpf = apf, for p - N.
Let Kf denote the subfield of C generated by the an. Then Kf is a totally real number

field. Let K be any number field containing Kf , O the ring of integers of K. Let ` be a
rational prime and fix an embedding λ of Q in Q`. We will denote by Kλ the completion of
K at λ, Oλ its ring of integers and Fλ its residue field. The following fundamental result is
due to Shimura and Deligne.

Theorem 1.1. There is associated to f a continuous representation (well defined up to
isomorphism)

ρf,λ : Gal(Q/Q)→ GL2(Kf,λ)

satisfying

(1) ρf,λ is unramified outside `N .
(2) For any p - `N , the characteristic polynomial of Frobp acting on ρf,λ is X2 − apX +

pk−1.

There is also an associated mod λ representation. Namely, since the Galois group is
compact, one can conjugate ρf,λ to take values in GL2(Oλ) and then reduce mod λ. The
semisimplication of this reduction can be shown to be independent of choices up to isomor-
phism, and the associated representation into GL2(Fλ) will be denoted ρ̄f,λ. Note that the
condition (2) above implies that if ρf,λ ' ρg,λ, then f = g. On the other hand, it is certainly
possible for two different newforms f and g (of possiby different level) to have the same as-
sociated mod λ-representations. Clearly this happens exactly when for all but finitely many
primes p, we have

ap(f) ≡ ap(g) mod λ.

We say in this case that f and g are congruent mod λ.
The systematic study of such congruences began with the work of Hida and Ribet in the

early 80’s and culminated in the work of Wiles and Taylor-Wiles on the Taniyama-Shimura
conjecture. We will describe some of these results since they will provide a context for the
main theme of this lecture series: (for simplicity, we will assume that λ is prime to all the
levels that occur; we also ignore powers of π and other constants that are not key to the
discussion.)

• Hida ([12], [13]) showed that there is a canonical period (which we will call Ωf ) such
that a prime λ divides the ratio

δf :=
L(k, Sym2 f)

Ωf
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if and only if f satisfies a congruence mod λ with another newform g in Sk(Γ0(N)) (of
level possibly smaller than N .) These days, it is customary to replace the symmetric
square L-function by the adjoint, which is just given by a shift. The L-value of
interest is then L(1, ad0f), where the general L-factor is

Lp(s, ad0f) = (1− αp
βp
p−s)(1− βp

αp
p−s)(1− p−s),

with αp and βp being the Hecke eigenvalues of f at p.
• Ribet ([24],[26]) proved a level-raising result: namely, f is congruent mod λ to a

newform g of level dividing Np and that is new at p if and only if λ divides the value
of Euler factor Lp(s, ad0f) at s = 1.
• Ribet ([27]) proved also a level-lowering result: namely, if p | N , then f is congruent

to a newform g of level dividing N/p if and only if ρ̄f,λ is unramified at p. In the case
of semistable elliptic curves for instance, this is equivalent to saying that λ divides
cp, the order of the component group of the Neron model of E at p.
• Finally, Wiles [41] defined a very precise measure of congruences (the η-invariant ηf ).

The articles [41] and [34] show firstly that

(1) vλ(ηf ) = vλ(δf ),

and secondly that #(Oλ/ηf ) is the size of a certain Selmer group H1
Σ(Q, ad0ρf,λ ⊗

Kλ/Oλ). This is essentially the Bloch-Kato conjecture for the adjoint L-value at 1.

A word about the relation (1) above. The eta-invariant is defined by looking at a suitable
localization TΣ of the Hecke algebra, which is a reduced Oλ-algebra equipped with a map

π : TΣ → Oλ

corresponding to the Hecke action on f . (Here we have possibly extended scalars so that
Oλ contains all Hecke eigenvalues of all forms in a certain finite set consisting of forms of
controlled levle and congruent to f mod λ.) Wiles then defines

(ηf ) = π(Ann(kerπ)).

The following lemma (copied from [4]: see Lemma 4.17 ) is the key ingredient used to show
(1):

Lemma 1.2. Suppose that there is a TΣ-module L satisfying the following properties:

(1) L is finitely generated and free over Oλ.
(2) L ⊗Oλ Kλ is free of rank d over TΣ ⊗Oλ Kλ.
(3) L is equipped with a perfect Oλ-bilinear pairing

〈, 〉 : L × L → Oλ

satisfying 〈Tx, y〉 = 〈x, Ty〉.
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Then, letting p := ker(π), the module L[p] is free of rank d over Oλ and for any basis
(x1, . . . , xd) of L[p], the relation

ηdf ⊆ Oλ · det(〈xi, xj〉)

holds. Further, if L is free as a TΣ-module, then we have equality above.

In the case of interest above, the module L is constructed from the H1 of a modular curve
X and can be shown to be free of rank 2 over TΣ. The pairing is given by tweaking the
cup-product and is skew-symmetric. Taking a basis x, y, for L[p] that is K-rational, and
translating to de Rham cohomology, one finds that

(2) (ηf ) = (〈x, y〉) =
〈f, f〉

Ωf

where Ωf is the determinant of the change of basis matrix from (x, y) to (ωf , ωfρ) with ωf
the one-form on X associated to f and 〈f, f〉 denotes the Petersson inner product:

〈f, f〉 =
1

vol(H/Γ)

∫
Γ\H

f(z)f(z)dxdy.

Finally, one uses a formula of Rankin and Shimura that shows:

〈f, f〉 = L(1, ad0f).

Consequently, we get the following:

BASIC PRINCIPLE:

Petersson inner product

canonical period
= congruence number.

We shall shortly explore how this generalizes to other contexts. For the moment, let us
note that in the classical situation, one can view cuspforms in two other ways:

(i) As functions on the group GL2(Q) \GL2(A): Let M be the order{(
a b
c d

)
∈M2(Z) : c ≡ 0 mod N

}
,

and let U be the open compact subgroup of GL2(Af ) defined by

U :=
∏
q

Uq, Uq := (M ⊗ Zq)
×.

Then, by strong approximation, we can write any g ∈ GL2(A) as

g = gQ · (gU · g∞)
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where gQ ∈ GL2(Q), gU ∈ U and g∞ ∈ GL2(R)+. Finally, we pick a base point i ∈ H and
define

F (g) = f(g∞(i))j(g∞, i)
−k

where j(γ, z) for γ =

(
a b
c d

)
∈ GL2(R)+ is the automorphy factor

j(γ, z) := (det γ)−1/2(cz + d).

The function F lives in L2(GL2(Q) \GL2(A)), and if f is a Hecke eigenform, generates an
automorphic representation of GL2(A), which we will call πf .

(ii) As sections of a line bundle on the modular curve X0(N) = H/Γ0(N). i.e.

(2πi)k/2f(z)dz⊗k/2

is Γ-invariant and gives a section of Ωk/2 on Y0(N) which extends to X0(N).

2. Quaternion algebras and the Jacquet-Langlands correspondence

One would like to extend the picture from the previous section to other algebraic groups.
The next simplest case is the multiplicative group of a quaternion algebra. We will start
by discussing the case of indefinite quaternion algebras since that is structurally similar to
the previous section. Henceforth, we assume that N is square-free since that makes things
a little easier to describe.

Let B be an indefinite quaternion algebra over Q. Thus B is ramified at an even number
of finite primes, the discriminant of B being the product of these. We will assume that the
discriminant of B is a divisor N− of N and write N = N+ ·N−.

Let us fix an isomorphism

ι∞ : B ⊗R 'M2(R),

as well as isomorphisms

ιq : B ⊗Q 'M2(Qq),

for all q that are split in B. Then there is a unique order MB in B satisfying the following
conditions:

(i) ιq(MB) = M ⊗ Zq for q - N−.
(ii) For q | N−, ιq(MB) is the unique maximal order in Bq := B ⊗Qq.
MB is an Eichler order i.e. an intersection of two maximal orders. Let ΓB be the (multi-

plicative) group of elements with reduced norm 1 in MB. It is analogous to Γ0(N), and via
ι∞ one can consider ΓB as a discrete subgroup of SL2(R). As in the classical case, one can
study modular forms of weight k with respect to Γ. One has analogously Hecke operators
Tp (say for p - N) and we can consider eigenforms for the Hecke algebra generated by these.
Again, we may think of such modular forms in two different ways:

(i) As automorphic forms on the group B× \B×A .
(ii) As sections of the line bundle Ωk/2 on the Shimura curve XB = H/Γ.
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Remark 2.1. The key difference between this case and the case of usual modular forms is
that XB is compact if B is a division algebra. One may imagine that this makes things easier
to study, while in fact the opposite is true for arithmetic questions, since q-expansions are
not available. For example, it is not clear how to normalize eigenforms or define notions of
rationality or integrality. It is also very hard to do computations on such curves: one of the
projects in this course will be to attempt to develop methods to compute effectively with
modular forms in this setting.

What gets us going is that the curve XB is not just defined over C, but has a canonical
model over Q, defined by Shimura. This model is characterized by requiring that if K
is an imaginary quadratic field embedded in B, then the (unique) fixed point on H of
ι∞(K×) ↪→ GL2(R)+ is algebraic and further Gal(Q/Q) acts on such points in a prescribed
manner. In fact, XB can be shown to have good reduction outside of N i.e. it has a smooth
model XB over Spec Z[ 1

N
]. This makes it possible to define rational and λ-integral (for λ - N)

structures on the space of modular forms of weight k by requiring that the corresponding
sections of Ωk/2 be rational or λ-integral. Let g be an eigenform that is normalized in this
way to be rational over the field of Hecke eigenvalues and λ-integral. Then exactly as in the
previous section, one can define a canonical period Ωg associated to g and an η-invariant,
ηg, and show that

(3) (ηg) =
〈g, g〉

Ωg

,

provided we have the requisite freeness results for the homology of XB over the Hecke algebra
(suitably localized). Such freeness results are known to hold in weight 2 under certain
conditions (see Helm[11] and Ribet[28]) but not in the same generality as is known for

modular curves. In general, we at least get (ηg) ⊆ (δg) := 〈g,g〉
Ωg

.

We would like to compare (2) with (3) when f and g are related by the Jacquet-Langlands
correspondence. Recall that the Jacquet-Langlands correspondence says that given such a
g, then there is an associated form f that is uniquely determined by requiring that the
eigenvalues of the Hecke operators Tp (for p - N) acting on g and f are equal. Conversely,
because of our assumptions on f being new of level N , there is an associated g on B that
corresponds to f . (In general, if we only assumed that f had level N ′ dividing N , there is
an associated g exactly when N− divides N ′.) Since the Hecke algebra for B is a quotient
of the one for GL2, one gets a containment:

(ηf ) ⊆ (ηg).

One further expects that Ωf = Ωg at least up to primes that are Eisenstein i.e. Ωf/Ωg ∈ Kf

and if ρ̄f,λ is irreducible, then this ratio is a λ-adic unit. This is hard to prove in general,
but suggests that the ratio

〈f, f〉
〈g, g〉

∼λ
ηf
ηg
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should “count” congruences between f and other newforms of level dividing N but not
divisible by N−.

Another case one might consider is that of definite quaternion algebras. In this case, the
associated “Shimura varieties” are just finite sets of points i.e. the geometry is very simple,
so all the interesting information is in the arithmetic of the quaternion algebra. Suppose
that B is a definite quaternion algebra, of discriminant N−∞ (so that N− is divisible by an
odd number of primes). Again, we let MB denote the unique order in B satisfying (i) and
(ii). The associated Shimura variety is just the set of right MB-ideal classes:

Cl(MB) := B× \ B̂×/M̂×
B .

Let {x1, . . . , xs} be a set of coset representatives for the elements in Cl(MB), and let Γi :=

xiM̂
×
Bx
−1
i ∩ B×. Then each Γi is a finite group, whose size we denote by wi. The Jacquet-

Langlands correspondence associates to f of weight 2 a form g on B(Q) \ B(A) which is

a complex valued function well defined up to scaling, right invariant by B×∞ and M̂×
B and

left invariant by B× i.e. a complex valued function on Cl(MB). 3 Let S2(B) denote the
space of such functions. The Petersson inner product (defined adelically using the Tamagawa
measure) can be shown to translate to the following inner product:

〈g1, g2〉 =
∑
i

1

wi
g1(xi)g2(xi).

Let M denote the module of O-valued functions on Cl(MB). We can normalize g so that it
lies inM and is primitive. There is as usual an action of the Hecke algebra on S2(B), which
preserves M. As in the previous cases, one can define an η-invariant, ηg which satisfies

(ηg) ⊆ (〈g, g〉)
and equality holds provided a suitable localization of M is free over the Hecke algebra. In
this case, no transcendental periods appear, and the requisite freeness results are known in
some cases but appear quite delicate in general.

Our point of view is going be to focus on the Petersson inner products, rather than on
the canonical periods or the eta-invariants. We would like to understand how the Petersson
inner products vary as we vary B over all the quaternion algebras that f transfers to. One
advantage of the Petersson inner products seems to be that one can obtain relations between
them without the delicate freeness results that seem to intervene when studying η-invariants.
In the next section, we will describe what can be proved for quaternion algebras over Q in
the weight 2 case.

3. Integral period relations for quaternion algebras over Q

The main theorem below is not stated anywhere as such in the literature, but is a com-
bination of various results. We state it in this way since this seems to be a rather elegant

3Forms of higher weight correspond to suitable vector-valued functions on Cl(MB).
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formulation that deals at once with definite and indefinite quaternion algebras. Further it
should generalize to higher weights and also to Hilbert modular forms.

Theorem 3.1. Let f be a modular form of weight 2 on Γ0(N) with N square-free. Let λ - 2N
be a prime in Kf such that ρ̄f,λ is irreducible. Let Σf be the set of primes dividing N∞.
Then there exists a function

c : Σf → C, v 7→ cv,

with the property that if B is any quaternion algebra that f admits a Jacquet-Langlands
transfer to, we have

〈fB, fB〉 ∼λ
L(1, ad0f)∏

v∈ΣB
cv

where fB denotes a λ-adically normalized form on B corresponding to f and ΣB is the set
of places (including ∞ possibly !) where B is ramified. Further, if q is a finite prime in
Σf , then cq ∈ Oλ and (cqOλ) is the largest power of the maximal ideal in Oλ such that ρf,λ
mod (cqOλ) is unramified at q.

We will sketch a proof assuming for simplicity that the Fourier coefficients of f live in Q
i.e. f corresponds to an isogeny class of elliptic curves over Q. 4 Thus λ = ` is a rational
prime. In this case, we define cq for finite q to be the order of the component group of the
Neron model of E at q of any curve E in this isogeny class. Since ` is not Eisenstein for f ,
this order is well defined up to `-units. Also, from the Tate parametrization of E at q, we
see that (cqZ`) satisfies the last condition in the statement of the theorem. At infinity, we
define

c∞ :=

∫
E(C)

ωE ∧ ω̄E

where ωE is a Neron differential on E. Again, this is well defined up to `-adic units if ` is
not Eisenstein for f .

We first deal with the indefinite case, which involves two main ingredients:
(i) A result due to Ribet and Takahashi relating degrees of modular parametrizations by

modular curves and Shimura curves.
(ii) A study of the Manin constant for the same parametrizations.

Here is an outline of (i) following Ribet-Takahashi[29]. Let V be an abelian variety over
Q and q a prime at which V has semi-stable reduction i.e. the reduction mod q of the Neron
model of V is an extension of an abelian variety by a torus. Let T (V, q) denote this torus and
let X (V, q) denote the character group HomF̄q(T (V, q),Gm). There is a canonical bilinear
(monodromy) pairing

uV : X (V, q)×X (V ∨, q)→ Z.

4The same proof generalizes with a little more effort to the case where the Fourier coefficients generate a
larger number field.
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If V is the Jacobian of a curve (as we assume henceforth), then V ∨ is canonically isomorphic
to V and we get a bilinear pairing

uV : X (V, q)×X (V, q)→ Z.

This pairing is not perfect in general; on the contrary, it induces an exact sequence of the
form

0→ X (V, q)→ Hom(X (V, q),Z)→ Φ(V, q)→ 0

where Φ(V, q) denotes the group of components of the Neron model of V at q.
Let JN1

0 (N2) denote the Jacobian of the Shimura curve corresponding to an Eichler order
of level N2 in a quaternion algebra of discriminant N1. Suppose N = DpqM for primes p and
q. Let J := JD0 (pqM) and J ′ := JDpq0 (M). Then there exist unique elliptic curves E and E ′

in the isogeny class corresponding to f that are strong Weil curves for J and J ′ respectively.
Namely, there are maps

ξ : J → E, ξ′ : J ′ → E ′

such that any map from J (resp. J ′) to an elliptic curve in this isogeny class factors through
ξ (resp. ξ′.) The composite ξ ◦ ξ∨ (resp. ξ′ ◦ ξ′∨) is just multiplication on E (resp. E ′) by
an integer δ (resp. δ′), called the modular degree.

We let
ξ∗,Φ : Φ(J, q)→ Φ(E, q), ξ′∗,Φ : Φ(J ′, p)→ Φ(E ′, p),

denote the induced maps on component groups. ( Notice that we’ve used two different primes
for J and J ′ !) Also let J ′′ := JD0 (qM). The key ingredient is the following fact, first proved
by Ribet [27] when D = 1 and generalized by Buzzard [3] for D > 1.

Proposition 3.2. There is an exact sequence

0→ X (J ′, p)
i−→ X (J, q)→ X (J ′′, q)×X (J ′′, q)→ 0,

which commutes with the action of the Hecke operators Tn for n prime to N . Further, the
map i is compatible with the monodromy pairings on X (J ′, p) and X (J, q).

Let L be defined by

L := {x ∈ X (J, q) : Tnx = an(f)x for all n - N}.
i.e. the f -part of X (J, q). Likewise, define L′ ⊂ X (J, p), so that L′ = L∩X (J ′, p). Note that
both L and L′ are free Z-modules of rank one. Hence the image of L in X (J ′′, q)×X (J ′′, q) is
torsion, and consequently zero. Thus i induces an isomorphism L′ ' L. Let us fix generators
g, g′ of L,L′ respectively such that i(g′) = g.

Let x be a generator of X (E, q), and let

ξ∗ : X (E, q)→ X (J, q), ξ∗ : X (J, q)→ X (E, q),

denote the maps induced by ξ, ξ∨ respectively. The composite ξ∗ ◦ ξ∗ is just multiplication
by the modular degree δ. Since uE(x, x) = cq(E), we get

(4) δcq = uE(x, ξ∗ξ
∗x) = uJ(ξ∗x, ξ∗x) = n2uJ(g, g)
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where ξ∗x = ng. Likewise
δ′c′p = m2uJ ′(g

′, g′),

where ξ′∗x′ = mg′ with x′ a generator of X (E ′, q). Since uJ ′(g
′, g′) = uJ(g, g), taking ratios

gives:
δcq
n2

=
δ′c′p
m2

.

Now look at the commutative diagram

0 // X (J, q) //

ξ∗

��

Hom(X (J, q),Z) //

Hom(ξ∗,Z)

��

Φ(J, q) //

ξ∗,Φ

��

0

0 // X (E, q) // Hom(X (E, q),Z) // Φ(E, q) // 0.

The left vertical map is surjective since J → E being optimal implies ξ∨ : E → J is
injective. Hence the cokernels of the two vertical maps on the right are identified: this
implies n = | coker ξ∗,Φ|. Likewise, m = | coker ξ′∗,Φ|. Now one uses the following key fact also
due to Ribet [25]: the action of the Hecke algebra on Φ(J, q) is Eisenstein. Hence n ∼ cq and

δ ∼ δ′ · cqcp
m2

.

(Here we have used again that ` is not Eisenstein for f , hence cp ∼ c′p and cq ∼ c′q. ) Now
we know that m divides cq; however by interchanging p and q, we find m divides cp as well.
Finally, one uses a trick to show that m divides cr for all r, hence is not divisible by `; if
not, by Ribet’s level-lowering theorem, f would be congruent mod ` to a form of weight 2
and level one, and such a form does not exist. The conclusion then is that

δ ∼ δ′ · cpcq
and by induction

δ(N−, N+) =
δ(1, N)∏
q|N− cq

.

It remains to relate the modular degrees to the Petersson inner products. This requires a
study of the Manin constant. Let us denote also by ξ the map X0(N) → E obtained by
composing with an embedding X0(N) ↪→ J0(N). Then for ω a Neron differental on E, the
pull back ξ∗(ω) equals 2πiωf on X0(N), up to a power of 2, where ωf denotes an integrally
normalized form. (This is due to Mazur and Raynaud in the semistable case: for a proof, see
Abbes-Ullmo[1] and Ullmo[35].) A similar result holds for Shimura curve parametrizations,
as is explained in §2.2.1 of [22]. Using again the fact that any two elliptic curves in the
isogeny class are isogenous by an isogeny of degree prime to `, one finds that

〈fB, fB〉 ∼ 〈f, f〉 ·
δ′

δ
∼ L(1, ad0f)∏

q|N− cq
.
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Next we sketch the definite case.The key ingredient is the following proposition: (I learnt
this from Pollack-Weston[19], who refer to Kohel[17], who in turn cites Takahashi[33] for
this formulation, and explains that the result is a consequence of Thm. 4.7 and Thm. 4.10
of Buzzard[3], that generalize the corresponding theorems in Deligne-Rapoport.)

Proposition 3.3. Let B be the definite quaternion algebra of discriminant N−. For q | N−,
there is a canonical Hecke equivariant isomorphism

MB ' X (J, q),

where J is the Jacobian of the Shimura curve of level N+q in the indefinite quaternion
algebra of discriminant N−/q. Further this isomorphism takes the inner product on MB to
the monodromy pairing on X (J, q).

It follows from the proposition and the proof of the indefinite case that

〈fB, fB〉 = uJ(g, g) =
δcq
n2
∼ δ

cq
∼ δ(1, N)∏

r|N− cr
∼ L(1, ad0f)∏

v|N−∞ cv
.

Remark 3.4. If one is only interested in period relations for definite quaternion algebras,
then all one needs is Prop. 3.3, equation (4) and the fact that n ∼ cq. Indeed, suppose B
is a definite quaternion algebra with discriminant N−, N = N+N− and q | N−, r | N+. Let
B′ be the definite quaternion algebra with discriminant N−r/q. Then

〈fB, fB〉 ∼
δ(N−/q,N+q)

cq
, and 〈fB′ , fB′〉 ∼

δ(N−/q,N+q)

cr
,

hence
cr · 〈fB, fB〉 ∼ cq · 〈fB′ , fB′〉.

Remark 3.5. For λ | N , we can still normalize forms canonically. On definite quaternion
algebras, this is no problem at all, while on indefinite ones we use a minimal regular model
of the Shimura curve. With this normalization, the result above continues to hold, except
if λ | q, then (cqOλ) is interpreted as the largest power (λnq) such that Af [λ

nq ] extends to
a finite flat group scheme over Oλ. For λ|2, again there is no problem in the definite case,
while in the indefinite case the only ambiguity arises from the Manin constant.

Question 3.6. This leaves open the question of what happens in the Eisenstein case. See
Problem 1.

4. The theta correspondence

In this section, we change focus somewhat and describe the basic constructions in the
theta correspondence. Later we will show how a study of the arithmetic of theta liftings
is related to the themes of the previous sections. We will be brief since this material is
amply explained elsewhere. In particular, the expository article of Dipendra Prasad [21] is
an excellent reference, and much of this section is a summary of the corresponding parts of
that article.
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Let k be a local field of characteristic not equal to 2. Let W be a finite dimensional
symplectic space over k i.e. W is equipped with a non-degenerate alternating form 〈·, ·〉.
The Heisenberg group H(W ) is a nontrivial central extension of W by k,

0→ k → H(W )→ W → 0,

defined as follows. We let H(W ) be the set of pairs (w, t) with w ∈ W and t ∈ K, multipli-
cation being defined by:

(w, t) · (w′, t′) = (w + w′, t+ t′ +
1

2
〈w,w′〉).

The key fact underlying the theory is the following result of Stone and von Neumann: given
any additive character

ψ : k → C×,

the group H(W ) admits a unique irreducible smooth representation (ρψ,S) on which k acts
via ψ. In fact, given any decomposition

W = W1 ⊕W2

into a sum of maximal isotropic spaces, the representation ρψ can be realized on the Schwartz
space S(W1). (This is the space of locally constant functions with compact support in the
non-archimedean case, and the space of C∞-functions of rapid decay in the archimedean
case.) The formulas defining ρψ on S(W1) are:

ρψ(w1)f(x) = f(x+ w1),

ρψ(w2)f(x) = ψ(〈x,w2〉)f(x),

ρψ(t)f(x) = ψ(t)f(x),

for w1, x ∈ W1, w2 ∈ W2 and t ∈ k.
Let Sp(W ) denote the symplectic group of W i.e. the group of linear automorphisms of

W preserving the form 〈·, ·〉. Then Sp(W ) operates on H(W ) by g · (w, t) = (gw, t). Thus
for g ∈ Sp(W ),

(w, t) 7→ ρψ(g · (w, t))
is another representation of H(W ) on S which k acts via ψ. By the irreducibility of (ρψ,S),
there exists an operator ωψ(g) on S unique up to scaling such that

ρψ(gw, t) · ωψ(g) = ωψ(g) · ρψ(w, t) for all (w, t) ∈ H(W ).

Let Mpψ(W ) denote the group of pairs (g, ωψ) satisfying the relation above, with multipli-
cation just defined coordinatewise. It fits into an exact sequence

0→ C∗ →Mpψ(W )→ Sp(W )→ 0.

It comes equipped with a natural representation ωψ on S given by projection on the second
factor, called the Weil representation.

We now recall the key notion of a dual reductive pair, due to Howe. This is a pair (G,G′)
of reductive subgroups of Sp(W ) that are centralizers of each other. Let G̃ and G̃′ denote
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the preimages of G and G′ in Mp(W ). It can be shown that G̃ and G̃′ commute with each
other. Hence the Weil representation can be used to construct a correspondence between
representations of G̃ and G̃′ that occur in the restriction of ωψ to G̃ and G̃′ respectively.
Here are some important examples of dual reductive pairs.

Example 4.1. Let W be a symplectic space and V an orthogonal space. Set W := W ⊗ V .
Then (Sp(W ),O(V )) is a dual reductive pair in Sp(W).

Example 4.2. Let K/k be a (possibly split) quadratic extension (with a 7→ ā the nontrivial
involution of K/k), V (resp. W ) be a right K-vector space equipped with a nondegenerate
Hermitian (resp. skew-Hermitian) form. i.e.

〈v1α1, v2α2〉 = ᾱ1〈v1, v2〉α2, 〈v2, v1〉 = 〈v2, v1〉,
〈w1α1, w2α2〉 = ᾱ1〈w1, w2〉α2 〈w2, w1〉 = −〈w2, w1〉,

for vi ∈ V , wi ∈ W , αi ∈ K. Let W := V ⊗W with alternating form given by

〈v1 ⊗ w1, v2 ⊗ w2〉 = trK/k(〈v1, v2〉 · 〈w1, w2〉).
Then (U(V ),U(W )) is a dual reductive pair in Sp(W).

We now describe the corresponding global objects. Let k be a number field, Ak the adele
ring of k and W a symplectic vector space over k. Let H(W ) denote the Heisenberg group
attached to W , viewed as an algebraic group over k and ψ : Ak/k → C∗ a nontrivial additive
character. Also let W = W1 ⊕W2 be a complete polarization. In exactly the same manner
as the local case, one can define a global metaplectic group Mp(W )(Ak)

5 which sits in an
exact sequence

0→ C∗ →Mp(W )(Ak)→ Sp(W )(Ak)→ 0,

and admits a (global) Weil representation on S(W1(Ak)). A key theorem due to Weil is that
the covering Mp(W )(Ak) → Sp(W )(Ak) splits canonically over Sp(W )(k). Indeed, Weil
defines the theta distribution on S(W1(A)):

Θ(ϕ) =
∑

x∈W1(k)

ϕ(x),

and shows that Θ is (up to scaling) the unique linear form on S(W1(A)) that is H(W )(k)-
invariant. Now it is easily checked that for any g ∈Mp(W )(k) i.e. the preimage of Sp(W )(k)
in Mp(W )(Ak), the linear form

ϕ 7→ Θ(ωψ(g)ϕ)

is also H(W )(k)-invariant, hence there is a scalar λg ∈ C∗ such that

Θ(ωψ(g)ϕ) = λgΘ(ϕ).

The assignment g 7→ λg is then a homomorphism Mp(W )(k) → C∗ which splits the exact
sequence

0→ C∗ →Mp(W )(k)→ Sp(W )(k)→ 0.

5This notation is somewhat misleading because Mp(W )(A) is not the adelic points of an algebraic group.
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Finally, we will recall the definition of global theta lifts. Pick ϕ ∈ S(W1(A)) and define a
function θϕ(g) for g ∈Mp(W )(A) by

θϕ(g) = Θ(ωψ(g)ϕ).

This defines an automorphic function on Mp(W )(A)/Mp(W )(k). Let (G,G′) be a dual
reductive pair in Sp(W ) (i.e. G and G′ are reductive algebraic groups over k that are
centralizers of each other in Sp(W )). Also for any algebraic subgroup H of Sp(W ), let
H̃(A) and H̃(k) denote the inverse images of H(A) and H(k) in Mp(W )(A). Since G̃(A)
and G̃′(A) commute with each other, we can restrict the function θϕ to a function θϕ(g, g′)

on G̃(A) × G̃′(A), called the theta kernel. This provides an integrating kernel to transfer
automorphic forms from G̃ to G̃′ and in the opposite direction as well. For f (resp. f ′) an
cuspform on G(k)\G̃(A) (resp. G′(k)\G̃′(A)), we define

θϕ(f)(g′) =

∫
G(k)\G̃(A)

f(g)θϕ(g, g′)dg,

θϕ(f ′)(g) =

∫
G′(k)\G̃(A)

f ′(g)θϕ(g, g′)dg′,

where dg and dg′ are suitably chosen measures. The span of θϕ(f) as f varies over all the
forms in a cuspidal representation π and ϕ varies over all the elements of S(V1(A)) will be
denoted Θ(π, ψ).

Remark 4.3. It is a very useful fact that for a dual reductive pair (G,G′), the metaplectic
cover splits over G(A) unless (G,G′) is the pair (Sp(W ),O(V )) in Sp(W ⊗ V ) and V is
odd-dimensional. This will be the case in all the examples we consider below. Consequently,
we can replace G̃ and G̃′ by G and G′ in the above discussion. There is however a tricky issue
having to do with picking the choice of splitting, since it may not be unique. For example,
it is not clear that one can pick a splitting over G(A) such that the image of G(A) contains
the image of G(k) under the previously chosen splitting of Sp(W )(k). We will ignore this
issue here.

Remark 4.4. An important question in the theory of the theta correspondence is to de-
termine when Θ(π, ψ) is nonzero. This can be quite subtle: for example, it could involve
both local conditions (epsilon factors) and global conditions (nonvanishing of L-values). It
is known that if Θ(π, ψ) is nonzero and consists of cusp forms, then it is irreducible.

Finally, we discuss the notion of seesaw pairs due to Kudla [18]. Two dual reductive pairs
(G,G′) and (H,H ′) in Sp(W ) are said to form a seesaw pair if H ⊂ G and G′ ⊂ H ′. We
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will denote this
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The usefulness of this definition stems from the following result, whose proof follows from
unwinding the definition an a change of variables.

Proposition 4.5. (Seesaw duality) Suppose f is a cusp form on H and f ′ a cusp form on
G′. Then

〈θϕ(f), g〉G′ = 〈f, θϕ(f ′)〉H
where we view θϕ(f) as a function on H̃ ′(A) restricted to G̃′(A) and likewise θϕ(f ′) as a

function on G̃(A) restricted to H̃(A).

5. Arithmetic of the Shimizu lift and Waldspurger’s formula

We now return to the problem of understanding Petersson inner products using the theta
correspondence. The key input will be the the Shimizu lift which gives an explicit realization
of the Jacquet-Langlands correspondence.

Let B be a quaternion algebra over Q. We let V = B viewed as a quadratic space with
inner product

〈x, y〉 = xyi + yxi

where i denotes the main involution on B. Let W denote a 2 dimensional symplectic space
over Q and consider the dual pair (Sp(W ),O(V )). In fact, it is more convenient to work with
the connected components of the similitude groups GSp(W ) = GL2 and GO(V ). There is
a map

B× ×B× → GO(V )

(α, β) ; (x 7→ αxβ−1),

which surjects onto the connected component of GO(V ), and whose kernel is Q× embedded
diagonally. Thus an automorphic representation of GO(V )0 is of the form π1⊗π2 where the
πi are automorphic representations of B×A such that the product of their central characters
is trivial.

The theory of theta lifting from the previous section can be extended to similitude groups,
see [9] for example. The key result is then the following, due to Shimizu:

Theorem 5.1. Suppose π is an automorphic representation of GL2(A) and ψ any additive
character of Q\A. If π does not transfer to B×(A), then Θ(π, ψ) = 0. If π does transfer to
an automorphic representation πB on B×(A), then

Θ(π, ψ) = πB ⊗ π∨B.
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Suppose that f is a newform in Sk(Γ0(N)) and let π denote the corresponding automorphic
representation of GL2(A), so that π∨ ' π. We may view f in the usual way as an element
of π, and likewise fB as an element of πB. (See appendix B for more details on this.) To
compare periods, one needs to pick an explicit Schwartz function ϕ ∈ S(V1(A)) such that

θϕ(f) = α · (fB × fB),

for a nonzero scalar α. In fact, it is easier to study the theta lift in the opposite direction,
since then one can compute the Fourier coefficients of the lifted form. One finds with a good
choice of ϕ (see [38]) that

θϕ(fB × fB) = 〈fB, fB〉 · f.
Using seesaw duality, it follows that

α =
〈f, f〉
〈fB, fB〉

.

To study the arithmetic of the scalar α, we follow Harris-Kudla [10] in using Waldspurger’s
work [40] relating period integrals to L-values. Namely, we pick a torus corresponding to
an imaginary quadratic field K in B× and compute the periods of θϕ(f) along K× × K×,
twisted by a Hecke character χ of K of infinity type (k, 0). If we write

B = K ⊕Kj = V1 ⊕ V2

as the sum of two orthogonal spaces, then the map B× × B× → GO(V )0 sends K× ×K×
to G(O(V1)×O(V2))0 = G(K× ×K×). This map is easily seen to be

(x, y) 7→ (xy−1, xȳ−1).

Also there is a seesaw pair

SL2 × SL2

MMMMMMMMMMMMMMMMMMMMMMM
O(V )

rrrrrrrrrrrrrrrrrrrrrrr

SL2 O(V1)×O(V2)

Since π has trivial central character, the integral

Lχ(fB) :=

∫
A×K

fB · χ

is trivial unless the central character ξχ := χ|A×Q is trivial. So we may assume this is the

case, and it follows then that

χ(x)χ(y) = χ(x)χ(ȳ)−1 = χ(xȳ−1).
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Another application of seesaw duality gives

α · Lχ(fB)2 =

∫
GL2(A)

f(g)θϕ((1, χ))(g)dg.

If the Schwartz function ϕ factors as

ϕ = ϕ1 ⊗ ϕ2 ∈ S(V1(A))⊗ S(V2(A)),

then the integral above is

(5)

∫
GL2(A)

f(g)θϕ1(1)θϕ2(χ)(g)dg.

For simplicity, we will assume this is the case, though in general, ϕ is only a sum of pure
tensors and so one gets a sum of such integrals.

To analyze the arithmetic properties of α, we first analyze the integral Lχ(fB). One
observes that Lχ(fB) is just a sum of values of fB at conjugates of a CM point on XB, twisted
by the values of χ (so that such a sum makes sense !) The curve XB is a coarse moduli space
for abelian surfaces with endomorphisms by an order in B. As in the case of usual modular
forms, one can think of modular forms on XB as functions of pairs (A, ω), where A is such an
abelian surface and ω is a differential form on A (in fact an element of ∧2Ω1

A) and satisfying
an appropriate transformation law. Now CM points on XB correspond to products E × E
where E is an elliptic curve with CM by an imaginary quadratic field K. Since CM elliptic
curves have potentially good reduction and fB is algebraic and even integrally normalized,
its values at CM points suitably normalized should be algebraic integers. Further, for any
prime p, there exist a choice of CM point such that the value of fB is a p-unit. It follows
from this discussion that the arithmetic properties of α are controlled entirely by those of
the triple integral (5).

In the present case, it turns out that f and θ1 := θϕ1(1) are holomorphic of weights k
and 1 respectively, while θϕ2(χ) is the complex conjugate of a holomorphic form θχ of weight
k + 1. So the triple integral is of the form

(6) 〈fθ1, θχ〉.

This can be analyzed by decomposing fθ1 as a sum of eigenforms. Suppose

fθ1 = g + g′

where g is the projection of fθ1 onto the old space spanned by θχ. Then

〈fθ1, θχ〉 = 〈g, θχ〉.

On the other hand, the Petersson inner product 〈θχ, θχ〉 can be related to the L-value
L(χ(χρ)−1, 1) which in turn is known by work of Shimura to be algebraic up to the correct
CM period. This turn out to be enough to show algebraicity of α and with some additional
care, even the rationality of α over Kf (see [10] §15). The integrality is somewhat more
subtle, and requires a precise control of the denominators of g. This can be accomplished
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using the Iwasawa main conjecture for K, a theorem of Rubin [30]; the reader is referred to
[22] for the details of this argument.

The upshot of the arguments sketched above is that α := 〈f, f〉/〈fB, fB〉 is p-integral
(under some local conditions on p.) Note that one advantage of the current argument is
that works equally well when the weight is not 2; the analog of the geometric arguments
(especially the Tate conjecture) of Sec. 3 are not known in this setting.

The connection with level-lowering congruences is seen most easily through the formula
of Waldspurger mentioned above. Indeed, the form θ1 is identified with an Eisenstein series
by the Siegel-Weil formula and the integral (6) is then identified with the value at the center
of the integral representation of the Rankin-Selberg L-function L(s, f × θχ). If f satisfies a
congruence mod p with a form g of level N−/q, then g satisfies a level-raising congruence at
q mod p and this imposes a condition on the Hecke eigenvalue of g at q. One can check that
this condition forces the L-value above to be divisible by p. (See [22] §5.2 for more details.)

Remark 5.2. One would like something more precise, namely a factorization of α as a
product of Tamagawa numbers cq. It seems plausible that this will follow by combining the
methods described in this section with those of Sec. 3 and a systematic use of p-adic families.

6. Hilbert modular forms, Shimura’s conjecture and a refined version

We now move to the setting of Hilbert modular forms. It will be more convenient to
simply use the language of automorphic representations. So suppose that F is a totally
real field, and π is an automorphic representation of GL2(AF ), that is holomorphic discrete
series of parallel weight 2. More generally, we could assume that the weight of π is equal to
(k1, . . . , kd) with

k1 ≡ · · · ≡ kd mod 2,

but for simplicity we will restrict ourselves to the parallel weight 2 case in these notes. Let
us also assume for simplicity that the conductor of π is a square-free ideal n in OF . If B is
any quaternion algebra over F with discriminant dividing n∞1 · · ·∞d, then by the Jacquet-
Langlands correspondence π transfers to an automorphic representation πB on B×(AF ). We
can also fix an arithmetic form fB in πB exactly as before. Namely, fB corresponds to a
section of an automorphic vector bundle (in fact line bundle in the parallel weight 2 case)
on the Shimura variety XB associated to B. This variety and the associated line bundle
have canonical models over a reflex field which extend to smooth models outside the primes
dividing n. So at least for λ - n, one can define the notion of a λ-adically normalized form.

We now recall Shimura’s conjecture for arithmetically normalized forms.

Conjecture 6.1. There exists a function c : Σ∞ → C× such that

〈fB, fB〉 ∼Q
∗
∏
v∈Σ∞
v 6∈ΣB

cv,

for all quaternion algebras B that f transfers to.
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Shimura proved several results in this direction, for example that if B and B′ have com-
plementary ramification at the infinite places, then

〈f, f〉 ∼Q
∗ 〈fB, fB〉 · 〈fB′ , fB′〉.

and as a consequence of this that 〈fB, fB〉 (up to Q
∗
) only depends on the set of archimedean

places where B is ramified.
Shimura’s conjecture was proven by Michael Harris [8] under the following hypothesis:

Hypothesis (*): There exist at least one finite place v at which πv is discrete series.

In the next section, we will outline the main ideas in his proof. The reason the hypothesis
(*) is necessary is because the proof uses an induction on the number of infinite places where
B is ramified and it becomes necessary to know that given any subset Σ of the infinite places,
that there is a quaternion algebra B′ such that the set of infinite places where B′ is ramified
is exactly Σ. The condition (*) was relaxed somewhat by work of Yoshida [39] using base
change. Namely, as explained at the end of [39], Thm. 6.8 of loc. cit. can be used to relax
condition (*), provided the weights satisfy kτ ≥ 3. In Sec. 8, we shall outline a new method
to approach this problem that seems to circumvent the need for this hypothesis. 6

For the moment, we’d like to formulate a more precise version of Shimura’s conjecture that
works up to λ-adic units. Note that it follows from the statement of Shimura’s conjecture
that

L(1, ad0π) ∼Q
∗
∏
v∈Σ∞

cv

and hence

〈fB, fB〉 ∼Q
∗
L(1, ad0π)∏

v∈Σ∞
v∈ΣB

cv
.

Comparing this with Thm. 3.1, we are lead naturally to the following conjecture.

Conjecture 6.2. Let Σ(π) denote the set of places v of F for which the local component πv
is discrete series. Then there exists a function c : Σ(π)→ C such that

〈fB, fB〉 ∼λ
L(1, ad0π)∏

v∈ΣB
cv
.

Remark 6.3. (1) This conjecture first appeared in [23].
(2) For infinite places v, one should expect the cv to be transcendental and also alge-

braically independent unless π is special, for eg. a base change from a smaller field.
(3) On the other hand, for finite places v, one should expect that cv is a λ-adic integer

that counts level-lowering congruences for π at v. i.e. (cvOλ) is the largest power of
the maximal ideal of Oλ such that ρf,λ mod (cvOλ) is unramified at v.

6In the course of writing these notes, I found a way to modify Harris’ original proof so that it also applies
without assuming hypothesis (*) ! I will describe this at AWS, and also eventually include it in the next
section.
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7. Unitary groups and Harris’ proof of algebraicity

In this section, we shall outline the main steps in the Harris’ proof of Shimura’s conjecture.
The main idea is to study the arithmetic of theta lifts between unitary groups. Let B be a
quaternion algebra over F and E ↪→ B be an embedding of E in B. Write

(7) B = E + Ej,

where this is an orthogonal decomposition for the norm form, so that tr(j) = 0 and xj = jxρ

for x ∈ E. Then B is a two-dimensional Hermitian space over E, with inner product

〈x, y〉 = pr(xρy),

where pr : B → E denotes the projection onto the first factor in equation (7). Note that
we can make B into a skew-Hermitian space if we wish by picking an element i ∈ E× with
tr(i) = 0 and setting

〈〈x, y〉〉 = i〈x, y〉.
The associated unitary group for the form 〈〈·, ·〉〉 is the same as that for 〈·, ·〉. Let us denote
the unitary similitude group GUE(B). Since trE/F ◦〈·, ·〉 is just the usual trace form on B,
we see that

GUE(B) ↪→ GO(B),

and is identified with the subgroup of E-linear elements in GO(B). Recall that GO(B) is
the semidirect product of its connected component GO(B)0 with the group of order two
generated by x 7→ x∗, and that GO(B)0 is identified with (B× ×B×)/F× via the map

ρ(α, β)x = αxβ−1.

Note that ρ identifies (B× ×K×)/F× with GUK(B). Thus an automorphic representation
of GUE(B) is identified with a pair consisting of an automorphic representation π of B×

and a Hecke character χ of E× such that ξπ · ξχ = 1.

This section needs to be completed.

8. Quaternionic unitary groups

In this section, we will present an outline of some ongoing joint work with Ichino [14]
which gives a new approach to this question and that seems well suited to study integrality
questions. The starting point for this was a different question, which I will now outline, that
has to do with the relation between period integrals of automorphic forms and special values
of L-functions.

Recall that there are two well-known formulae of this kind.

(1) First, let π be an automorphic representation on GL2(AF ), E a quadratic extension
(say CM extension) and χ a Hecke character of A×E satisfying

ξπ · ξχ = 1,
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where ξπ and ξχ denote the central characters of π and χ respectively. i.e. ξχ =
χ|A×F . The L-function L(s, πE, χ) = L(s, π × πχ) is then self-dual. Suppose that the

corresponding epsilon factor ε(1
2
, π, χ) = 1. Then a beautiful theorem of Tunnell-

Saito-Waldspurger says that there is a unique quaternion algebra B with ΣB ⊂ Σ(π)
(so that π admits a Jacquet-Langlands transfer πB to B×), a form fB ∈ πB and an
embedding E ↪→ B such that∣∣∫ fB|E×(A) · χ

∣∣2
〈fB, fB〉

=
L(1

2
, πE, χ)

L(1, ad0π)
.

We remind the reader that equality here is only up to nonzero explicit factors that
are relatively unimportant. The quaternion algebra B is determined by the local
epsilon factors, namely for all places v, we have

εv(B) = ξπ,v(−1)εv(
1

2
, πE, χ).

(2) Next, suppose π1, π2, π3 are three automorphic representations of GL2(AF ) satisfying

ξπ1 · ξπ2 · ξπ3 = 1.

Then the triple product L-function L(s, π1 × π2 × π3) is self-dual. Suppose that the
epsilon factor ε(1

2
, π1 × π2 × π3) is 1. Then a formula of Harris-Kudla (building on

work of Dipendra Prasad, and extended by Watson [38], Ichino-Ikeda) shows that
there is a unique quaternion algebra B such that
• All the π transfer to B×

• There exist fi ∈ πi,B such that∣∣∣∫B×Q\B×A f1,B · f2,B · f3,B

∣∣∣2
〈f1,B, f1,B〉〈f2,B, f2,B〉〈f3,B, f3,B〉

=
L(1

2
, π1 × π2 × π3)

L(1, ad0(π1))L(1, ad0(π2))L(1, ad0(π3))
.

Again, the quaternion algebra B is determined by a local epsilon factor:

εv(B) = εv(
1

2
, π1 × π2 × π3).

One would like to understand how these formulae are related, in a situation in which the
degree 8 triple product L-function splits as a product of two Rankin-Selberg L-functions.
This happens for instance when

π1 = π, π2 = πη1 , π3 = πη3 ,

where η1 and η2 are two Hecke characters of E such that

ξπ · ξη1 · ξη2 = 1.

Let χ1 := η1 · η2 and χ2 = η1 · ηρ2 where ρ is the nontrivial element in Gal(E/F ). Then

L(s, π1 × π2 × π3) = L(s, πE, χ1) · L(s, πE, χ2),
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so that the two formulas above when combined give a formula of the sort

(8)

∣∣∣∣∣
∫
B×Q\B

×
A

f1,B · f2,B · f3,B

∣∣∣∣∣
2

=

∣∣∣∣∫ fB1|E×(A) · χ1

∣∣∣∣2 · ∣∣∣∣∫ fB2|E×(A) · χ2

∣∣∣∣2 ,
up to normalizing factors. Here B, B1 and B2 could be different quaternion algebras. One
quickly checks using the epsilon factor conditions above that they must satisfy the relation

B = B1 ·B2

in the Brauer group.

Question: Can one prove a relation of the sort in (8) without using the Rankin-Selberg and
triple product formulae ?

The key construction that enables one to do this is the following. Recall that the E embeds
in both B1 and B2. Let us fix these embeddings and write

B1 = E + Ej1 B2 = E + Ej2

where these are orthogonal decompositions for the norm form. Thus xji = jix
ρ for i = 1, 2

and x ∈ E and tr(j1) = tr(j2) = 0. Define elements J1, J2 ∈ E by J1 := j2
1, J2 := j2

2 and
let pr1 : B1 → E and pr2 : B2 → E denote the projections onto the first factor. As in the
previous section, we can view B1 and B2 as right Hermitian K-spaces, with inner product

(x, y) = prj(x
∗y), for x, y ∈ Bj.

Now set V := B1 ⊗E B2 so that V is naturally a right Hermitian E-space. In fact, we shall
modify this inner product to make it skew-Hermitian. Namely, pick an element i ∈ E with
Tr(i) = 0 and define a skew-Hermitian pairing (·, ·) on V by

(x1 ⊗ x2, y1 ⊗ y2) = i(x1, y1)1(x2, y2)2.

Let J := J1J2 and let B be the quaternion algebra defined by the relations

B = E + Ej, j2 = J, xj = jxρ for x ∈ E.

Then B = B1 · B2 in the Brauer group. The right E-module V can in fact be given the
structure of a right B-module, by setting

(1⊗ 1) · j = (j1 ⊗ j2), (j1 ⊗ 1) · j = J1(1⊗ j2),

(1⊗ j2) · j = J2(j1 ⊗ j2), (j1 ⊗ j2) · j = J(1⊗ 1).

It is tedious but straightforward to check that this gives a right action of B on V . Finally,
one can define a B-skew Hermitian form 〈, 〉 on V with the property that

pr ◦〈·, ·, 〉 = (·, ·),
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where pr : B → E denotes the projection onto the first factor. In this way, V has the
structure of a 2-dimensional right skew-Hermitian B-module. We will use the unitary group
GUB(V ) or rather its connected component

GUB(V )0 = (B×1 ×B×2 )/F×,

where F× embeds in B×1 B2 by λ 7→ (λ−1, λ) and an element (α1, α2) of B×1 ×B×2 acts on V
by left-multiplication.

Let W = B thought of as a left Hermitian B-space with inner product 〈x, y〉 = x∗y.
We consider the theta correspondence from B× = GUB(W ) to GUB(V )0. Note that an
automorphic representation of GUB(V )0 is identified with a pair (π1, π2), where πj is an
automorphic representation of Bj such that ξπ1 = ξπ2 . One can then show that

(9) θ(πB) = πB1 × πB2 ,

as one would expect. Further, there is a see-saw pair of the form

G(B× ×B×) = G(UB(W )×UB(W ))0

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
GUB(V )0 = (B×1 ×B×2 )/F×

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

B× = GUB(W )0 G(UB(V1)×UB(V2))0 = G(E× × E×)

The equality of the periods in (8) then follows from a simple application of Kudla’s seesaw
identity, once one understands the theta lifts in both direction.

The application to Petersson inner products comes form analyzing the arithmetic proper-
ties of the theta lift (9). The point is that for a nice canonical choice of theta function, we
have

θ(fB) = α(B1, B2)fB1 × fB2 ,

for some scalar αB1,B2 ith fB, fB1 and fB2 arithmetically normalized. For simplicity, let us
assume that αB1,B2 is real. To relate the Petersson inner products, one uses the Rallis inner
product formula which in this case takes the form

(10) α(B1, B2)2〈fB1 , fB1〉〈fB2 , fB2〉 = 〈θ(fB), θ(fB)〉 = 〈fB, fB〉 · L(1, ad0π).
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If conjecture A is true, then we get

α(B1, B2)2 =
〈fB, fB〉 · L(1, ad0π)

〈fB1 , fB1〉 · 〈fB2 , fB2〉

=

∏
v∈ΣB1

cv ·
∏

v∈ΣB2
cv∏

v∈ΣB
cv

=

 ∏
v∈ΣB1

∩ΣB2

cv

2

This leads to the following conjecture on arithmeticity of theta lifts.

Conjecture 8.1. (Conjecture B) [14]

(1) If Σ∞B1
∩ Σ∞B2

= ∅, then α(B1, B2) is algebraic and is a λ-adic integer.
(2) If further ΣB1 ∩ ΣB2 = ∅, then α(B1, B2) is a λ-adic unit.

We have just seen that Conjecture A implies Conjecture B. We shall now show that the
opposite implication is true as well, namely Conjecture B implies Conjecture A. To do so,
we need to define suitable factors cv. First, let S ⊂ Σ(π) be any subset of Σ(π) with |S|
even. For such S define

cS :=
L(1, ad0π)

〈fBS , fBS〉
where BS is the unique quaternion algebra with discriminant S. Note that if S and T are
two such sets of even cardinality that are disjoint, then

(11) cStT = cS · cT
as follows easily from equation (10) and Conjecture B. Now, we may assume that Σ(π) has
at least three elements. For any v ∈ Σ(π), we pick any two other elements s, t ∈ Σ(π) and
define cv by

c2
v =

cvs · cvt
cst

.

Let us show this is independent of the choice of s and t. It is enough to show that we may
replace t by some r ∈ Σ(π) which is distinct from v, s and t. Namely, we want to show

cvs · cvt
cst

=
cvs · cvr
csr

i.e. cvt · csr = cvr · cst.

But this follows since both the LHS and RHS of the last equation are equal to cvrst by
equation (11). Finally, we show that if v and w are distinct elements of Σ(B), then

cvw = cv · cw.
Indeed, picking some s distinct from v and w, we have

c2
v =

cvw · cvs
cws

and c2
w =

cvw · cws
cvs

,
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so that c2
v · c2

w = c2
vw, as required. Finally, for S any subset of ΣB of even cardinality, say

S = {v1, v2, . . . , v2n}, we have

cS = cv1v2 · cv3v4 · · · cv2n−1v2n =
2n∏
i=1

cvi ,

by repeated application of equation (11). Then, for any B with ΣB ⊂ Σ(π), we get

〈fB, fB〉 =
L(1, ad0π)

cΣB

=
L(1, ad0π)∏

v∈ΣB
cv
,

as required.

This section needs to be completed.
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Appendices
A. Outline of student projects

A.1. Project A: Periods on definite quaternion algebras. In section 3, we outlined a
proof of period relations for definite quaternion algebras over Q outside Eisenstein primes.

(1) Can you come up with a conjecture for what happens at Eisenstein primes, by com-
puting some examples using Magma ?

Andrew Snowden, who will be assisting me with the course, has written some
code that does some of these computations over Q. This is a Magma program which
takes as input a squarefree odd number N , computes all Brandt modules whose
discriminant and level multiplies to N , groups the newforms in these Brandt modules
according to how they correspond under Jacquet-Langlands and then computes the
norms of these forms. This code along with instructions on how to use it is available
at:

http://math.mit.edu/ asnowden/aws11/

Alternately, Appendix C by John Voight gives an outline of how to do such com-
putations in specific cases in the more general case of totally real fields.

(2) State what you think should be the analogs of the results Prop. 3.2 and Prop. 3.3
when Q is replaced by a totally real field F . Can you find such results in the literature
? How far can you take the argument of Sec. 3 in the totally real case ?

(3) Using Magma again, compute examples over totally real fields to verify some cases
of the period relations.

A.2. Project B: Computing on Shimura curves I. The goal of this project will be to
compute Taylor expansions of modular forms on Shimura curves at CM points.

(1) We will start by putting ourselves in a very simple situation. Let K be the imaginary
quadratic field Q(

√
−7). This has class number one and the only units in the ring

of integers are {±1}. Let B = M2(Q) and E the elliptic curve X0(11). Since 11 is
split in K, one can find a Heegner point on X0(11) coming from K. In fact, there
are two such points corresponding to the two primes p, p̄ in OK such that (11) = pp̄.
Read the discussion in Gross-Zagier[7] Ch. II §1 and compute representatives τ1, τ2

for these Heegner points on the upper half plane. You can also compute this using
SAGE, but if you’ve never seen this before it’s a good idea to compute an example
or two by hand. Here is sample code in SAGE to do this. (SAGE is somehow picking
one of the two Heegner points, it’s not clear to me how this choice is being made.)

sage: E=EllipticCurve(’11a’)
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sage: P=E.heegner_point(-7,1)

sage: P.tau()

1/22*sqrt_minus_7 - 9/22

The arguments (-7,1) above indicate you want a Heegner point for Q(
√
−7) of con-

ductor 1.

(2) Let us pick τ = τ1. Let f be the modular form corresponding to E. We would like
to compute the Taylor expansion of f at τ . Of course, one can do this by just using
the q-expansion of f . However, the point is to develop a technique to do this in a
situation where q-expansions are not available. We will use the following formula (see
[2] Ch. 5 and 6) which holds more generally:

(12) [δjf(τ)]2 =
µ
k
2

+j(n)

wN,f ·N
k
2

+j

Γ(j + 1)Γ(k + j)wK
√
|dK |Im(τ)−(k+2j)

(4π)k+2j+1
· L(k + j, f × θµj),

where
• K is an imaginary quadratic field of odd discrminant dK and class number 1.
• wK is the number of roots of unity in K.
• f is a form of even weight k and odd conductor N , where all the primes dividing
N are split in K. wN,f is the eigenvalue of the Atkin-Lehner operator wN acting
on f .
• N = nn and τ is a Heegner point on H corresponding to n (well defined up to

Γ0(N)-action.)
• µ is the unique unramified Hecke character of K of infinity type (2, 0).
• j ≥ 0 is an integer and δjf denotes the image of f under the Shimura-Maass

operator applied j times.
Here is some sample code in Magma to compute the L-value above for the case

j = 0. This uses the fact that f is the unique cusp form of weight 2 on Γ0(N) and
θµ is the unique cusp form of weight 3 on Γ1(7).

> M:=ModularForms(11);

> M:=CuspidalSubspace(M); M;

Space of modular forms on Gamma_0(11) of weight 2 and dimension 1 over

Integer Ring.

> f:=M.1; f;

q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 - 2*q^10 + q^11

+ O(q^12)

> M:=ModularForms(Gamma1(7),3);

> M:=CuspidalSubspace(M); M;

Space of modular forms on Gamma_1(7) of weight 3 and dimension 1 over

Integer Ring.

> g:=M.1; g;

q - 3*q^2 + 5*q^4 - 7*q^7 - 3*q^8 + 9*q^9 - 6*q^11 + O(q^12)



29

> Lf:=LSeries(f);

> Lg:=LSeries(g);

> L:=TensorProduct(Lf,Lg);

> Evaluate(L,2);

3.74353612485091521049660878267

For the more general case, one would need to write some code to find the local
factors for the L-function of θµj . Also, Magma seems to slow down considerably as
we increase j and even more so if we increase N , so we should try to find another way
to evaluate the L-value above. One possibility is to use Rubinstein’s lcalc in SAGE.
(SAGE also has another L-value evaluator, namely Dokchitser’s, but I couldn’t get
that to work.)

Now compute directly the value of f(τ) using the q-expansion and compare this with
the value you got previously.

(3) Next repeat the same with (δjf(τ))2 for the first few values of j. Again, compare this
with what you get using the q-expansion. One check worth doing is the following:
the ratio

(2πi)k+2jδjf(τ)

Ωk+2j

should live in K, with Ω being a period of an elliptic curve over Q with CM by
K. For example, one could take Ω to be the real period of the elliptic curve A of
conductor 49A in Cremona’s tables. You can compute Ω in Magma using:

> A:=EllipticCurve([1,-1,0,-2,-1]);

> RealPeriod(A);

1.93331170561681154673307683903

We now need to fix the sign of δjf(τ). To do this, we will explore two different
methods.

(4) The first possiblity is to guess the signs and use this to write down a power series
expansion for f at τ . We can then evaluate this power series at γτ for a large number
of γ ∈ Γ0(N) and match this against the modularity of f :

f(γτ) = j(γ, τ)2f(τ).

Alternately, (as was suggested to me by John Voight) one could use the image of τ
under Hecke operators Tp for many p, and check that the appropriate relations hold.

When expanding f in a power series at τ , one should be careful to use a good
choice of coordinate. If one uses the usual coordinate on the upper half plane, then
the power series will only converge on the maximal disc about τ in the upper half
plane. So it’s better to move to the unit disc model of the upper half plane via the
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change of variables:

z 7→ z − τ
z − τ̄

.

Let F be the resulting function on the unit disc. Find a formula relating δjf(τ) to
the Taylor coefficients of F at 0. The power series for F at the origin will have radius
of convergence 1.

(5) Here is another possible method to fix the signs. Find a formula analogous to equation
(12) above for the value

δj1f(τ) · δj2f(τ),

with j1 ≥ j2 ≥ 0 nonnegative integers. Roughly, this should take the form

δj1f(τ) · δj2f(τ) = C(f, j1, j2, τ) · 〈θχ1 , D(f · θχ2)〉,
where
• χ1 and χ2 are certain Hecke characters of K of infinity type k+j1 +j2 and j1−j2

respectively
• D is a certain differential operator taking forms of weight k+ j1− j2 +1 to forms

of k + j1 + j2 + 1.
• C(f, j1, j2, τ) is an explicit constant.

We will explore such a formula in Appendix B.

(6) Having computed the Taylor expansion of f , use it to compute the integral

(13)

∫ τ ′

τ

2πif(z)dz

where τ ′ is the Heegner point corresponding to p̄. Let Λ be the period lattice for the
elliptic curve E. Compute the point on E obtained as the image of the integral (13)
in C/Λ. You should get a K-rational point on E.

(7) Next, repeat all of the above for a newform f on a compact Shimura curve over Q.
For example, one could take B to be the indefinite quaternion algebra of discriminant
15 and f to correspond to an elliptic curve over Q of conductor 15. (There is a unique
such curve up to isogeny.) Since 3 and 5 are inert in K, one can construct Heegner
points corresponding to K on XB. One thing you will need is a formula for the values
of the Jacquet-Langlands transfer g of f at Heegner points analogous to equation (12)
above. This should look like:

(14)
[δjg(τ)]2

〈g, g〉/〈f, f〉
= C ·

Γ(j + 1)Γ(k + j)wK
√
|dK |Im(τ)−(k+2j)

(4π)k+2j+1
· L(k + j, f × θµj),

where

C =
1

wN,f
·

(
J(j, τ)

J(j, τ)
· (µρ ·N−1)(I)

) k
2

+j

·
∏
q|N−

q − 1

q + 1
,



31

with B = K +Kj an orthogonal decomposition for the norm form and

I := {α ∈ K : αj ∈ O(N−, N+)}.

(8) Finally, if we’re successful with all of the above, we will think about the totally real
case. One example that would be particularly interesting to compute is the following:
• F is a totally real cubic field.
• B is a quaternion algebra over F ramified at two infinite primes and nowhere

else.
• E is an elliptic curve over F that is unramified everywhere. Then E can be

realized as a quotient of the Shimura curve XB.
• Let K be a CM field over F . Then XB admits Heegner points associated to K.

Can one compute the images of such Heegner points in E ? Note that this is a
situation in which methods coming from p-adic uniformization don’t work since there
are no finite primes at which B is ramified.

A.3. Project C: Computing on Shimura curves II. This goal of this project will be to
pursue an alternative approach to computing modular forms on Shimura curves, suggested
by Paul Nelson (who is one of the graduate students in our group). The idea is to compute
directly the Shimizu lift. The method is described in detail in Appendix C.
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B. Computing on Shimura Curves I: Expansions at CM points

The goal of this appendix is to outline one possible technique for computing with modular
forms on Shimura curves. Since Shimura curves do not admit cusps, there are no q-expansions
to work with. One alternative is to instead use the Taylor expansion at a well chosen CM
point, in a suitably chosen coordinate. We will explain how this can be computed below.

B.1. Basic setup. We will put ourselves in the following very simple situation:

• N is a square-free positive integer.
• N = N+ ·N− where N− has an even number of prime factors.
• B is the indefinite quaternion algebra over Q with discriminant N−. Fix an isomor-

phism ι : B ⊗R 'M2(R).

• ON−,N+ is an Eichler order of level N+ in B, U := ÔN−,N+

×
.

• Γ is the group of norm 1 elements in M , thought of as a subgroup of SL2(R) via the
isomorphism ι.
• f is a newform on Γ0(N) of weight 2k, trivial central character and coefficients in Q.
• fB denotes its Jacquet-Langlands transfer to B×. This can be viewed as a holomor-

phic function on H, well defined at least up to scaling and satisfying

fB(γ · z) = J(γ, z)2kfB(z)

for all γ ∈ Γ and z ∈ H. (Here we set J(γ, z) := cz + d, if γ =

(
a b
c d

)
is in

GL2(R) and for future use, j(γ, z) := det(γ)−1/2J(γ, z).)
• K is an imaginary quadratic field that is Heegner for fB. i.e. K is split at all

the primes dividing N+, inert at all the primes dividing N−. Thus K admits an
embedding

ξ : K ↪→ B

such that

K ∩ ON−,N+ = OK .
• We assume that the only roots of unity in K are {±1} and that the class number

of K is 1. Let µ denote the unique unramified Hecke character of K of infinity type
(2, 0), i.e. as a character on ideals,

µ((a)) = a2.

Viewed as a character on K× \ A×K , it satisfies

µ(x · u · a∞) = µ(x)a−2
∞

for all u ∈ ÔK
×

and a∞ ∈ K×∞. Note that for every positive integer 2` ≥ 2, the
character µ` is the unique unramified Hecke character of K of infinity type (2`, 0).
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• We denote by δ` the Shimura-Maass operator on C∞-forms of weight ` for Γ by

δ`(g) =
1

2πi

(
∂

∂z
+

`

2iy

)
g.

This maps C∞-forms of weight ` to C∞-forms of weight ` + 2. Also, we will denote

by δ
(j)
` the composite

δ
(j)
` (g) = δ`+2j−2 ◦ · · · ◦ δ`,

which takes forms of weight t to forms of weight t+ 2j. We will often just write δjg

for δ
(j)
` (g).

• Let us fix an embedding ξ as above. The image of K× in GL2(R) under ι ◦ ξ has
a unique fixed point τ on H. We would like to expand fB as a power series at τ .
Obviously, this is equivalent to computing δjfB(τ) for all j ≥ 0.

Let F j
B be the automorphic form on B×A defined as follows. For any x ∈ B×A , write (using

strong approximation)

(15) x = γ · (u · γ∞)

where γ is in B×, u is in U and γ∞ ∈ (B ⊗R)+ = GL2(R)+. Then set

F j
B(x) = j(γ∞, τ)−(2k+2j)δjfB(γ∞τ).

This is easily checked to be independent of the decomposition (15).

Lemma B.1. Suppose α ∈ K×∞. Then

F j
B(xα) = F j

B(x) · α−(k+j)αk+j.

Now define aj by

aj :=

∫
A×K

F j
B(x) · (µ−(k+j)Nk+j

K )(x)d×x

Lemma B.2.
aj = δjfB(τ).

We will give for every pair (j1, j2) a formula for aj1aj2 . Without loss of generality we may
assume j1 ≥ j2.

B.2. Maass operators and Whittaker coefficients. In this section we will work on GL2

and compute the Whittaker coefficients of δjf where f is a normalized eigenform of weight
` on Γ0(N). Let us write F for the adelic form associated to f and F j for the adelic form
associated to δjf .

Suppose

f(z) =
∞∑
n=1

ane
2πinz.
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Then

F

([
y 0
0 1

]
∞

)
= f(iy)y`/2 =

∞∑
n=1

any
`/2e−2πny.

On the other hand, defining

WF (g) =

∫
Q\A

F

((
1 x
0 1

)
g

)
τ(x)dx,

we have

F

([
y 0
0 1

]
∞

)
=
∑
ξ∈Q×

WF

(
ξy 0
0 1

)
=
∑
ξ∈Q×

WF,fin

([
ξ 0
0 1

])
WF,∞

([
ξy 0
0 1

])
,

where WF,fin and WF,∞ are normalized by

WF,fin(1) = 1, WF,∞

([
y 0
0 1

])
= y`/2e−2πyIR+(y).

Now one computes:

δf(z) =
∞∑
n=1

(
n− `

4πy

)
ane

2πinz;

δ2f(z) =
∞∑
n=1

(
n2 − 2`+ 2

4πy
n+

`2 + `

(4πy)2

)
ane

2πinz,

and so on. i.e.

Proposition B.3. There is a monic polynomial pj(t) of degree j with integer coefficients
such that

WF j

([
y 0
0 1

]
∞

)
=

1

(4π)j
pj(4πy)y`/2e−2πy.

Example B.4. We have p1(t) = t− ` and p2(t) = t2 − (2`+ 2)t+ (`2 + `).

B.3. Explicit theta lifts. Let ψ denote the additive character of A/Q given by ψ((xv)v) =∏
v ψv(xv), where

ψ∞(x) = e2πix, ψq(x) = e−2πix for x ∈ Z

[
1

q

]
⊂ Qq.

Let (V, 〈, 〉) be an orthogonal space over Q, and denote by O(V ) (resp. GO(V )) its isometry
(resp. similitude) group. Recall the Weil representation rψ =

∏
v rψ,v of the group SL2(A)×

O(V )(A) on the Schwartz space S(V (A)). On the orthogonal group, rψ,v is given by

rψ,v(g)ϕ(x) = ϕ(g−1 · x) for g ∈ O(V ), ϕ ∈ S(V (Qv)).

On SL2(Qv), the representation rψ,v is described by its action on the matrices

U(a) :=

(
1 a
0 1

)
, D(a) :=

(
a 0
0 a−1

)
, W =

(
0 1
−1 0

)
,
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by the equations

rψ,v(U(a))ϕ(x) = ψv(
1

2
〈ax, x〉)ϕ(x),

rψ,v(D(a))ϕ(x) = (a, V )v|a|dim(V )/2
v ϕ(ax),

rψ,v(W )ϕ(x) = γV ϕ̂(x),

where

• (·, ·)v denotes the Hilbert symbol so that (·, V )v is the quadratic character associated
to V .
• γV is an eighth root of unity, the exact value of which can be found in [15] §1.
• The Fourier transform ϕ̂ is defined by

ϕ̂(x) =

∫
V (Qv)

ϕ(y)ψv(〈y, x〉)dy,

the measure dy on V (Qv) being chosen such that ˆ̂ϕ(x) = ϕ(−x).

We will need to extend the Weil representation to similitude groups, following Harris-
Kudla [9]. Let R be the group defined by:

R := {(g, h) ∈ GL2 ×GO(V ) : det(g) = ν(h)}
where ν denotes the similitude character of GO(V ). Then rψ can be extended to R(A) by

rψ(g, h)ϕ = rψ

(
g ·
(

1 0
0 det g−1

))
L(h)ϕ,

where
L(h)ϕ(x) = |ν(h)|− dim(V )/4ϕ(h−1x).

Let GO(V )0 denote the algebraic connected component of GO(V ). If F is an automorphic
form on GL2(A) and ϕ ∈ S(V (A)), we define for h ∈ GO(V )(A),

θϕ(F )(h) :=

∫
SL2(Q)\SL2(A)

∑
x∈V (Q)

rψ(gg′, h)ϕ(x)F (gg′)d(1)g,

where g′ is chosen such that det(g′) = ν(h). Likewise, in the opposite direction, if F ′ is an
automorphic form on GO(V )0(A), and g ∈ GL2(A) is such that det(g) ∈ ν(GO(V )(A)), we
set

θtϕ(F ′)(g) :=

∫
O(V )(Q)\O(V )(A)

∑
x∈V (Q)

rψ(g, hh′)ϕ(x)F ′(hh′)dh,

where h′ ∈ GO(V )0(A) is chosen such that det(g) = ν(h′). (We refer the reader to [22],
§1, for the choices of measures in the above and in what follows. ) If π (resp. Π) is an
automorphic representation of GL2(A) (resp. of GO(V )0(A)), we define

θ(π) := {θϕ(F ) : F ∈ π, ϕ ∈ S(V (A))};
θt(Π) := {θtϕ(F ′) : F ′ ∈ Π, ϕ ∈ S(V (A))}.
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Now set V = B and consider V as an orthogonal space over Q with bilinear form 〈x, y〉 =
1
2
(xyi + yxi), where x 7→ xi denotes the main involution. The associated quadratic form is

just x 7→ xxi = ν(x), where ν(·) is the reduced norm. The group GO(V )0 is identified with
Q×\B××B× via the map (α, β) 7→ δ(α, β) where δ(α, β)(x) = αxβ−1. Thus an automorphic
representation of GO(V )0(A) is identified with a pair (π1, π2) of representations of B×A , such
that the product of the central characters of π1 and π2 is trivial.

Let π denote the (unitary) automorphic representation of GL2(A) associated to f . The
following theorem is the classical Jacquet-Langlands correspondence realized using theta
functions, and is essentially due to Shimizu [32]. (See also [38] §3.2.)

Theorem B.5. (1) θ(π̄) = π̄ × π, where π̄ = π∨ ' π, since π has trivial central charac-
ter.

(2) θt(π × π̄) = π.

We will need a statement involving specific forms in π and π̄ and explicit theta functions
i.e. explicit choices of Schwartz functions. Recall that we have picked an embedding K ↪→ B,
so we can write B = K +K⊥ = K +Kj where tr(j) = 0 and

jx = x̄j for x ∈ K.
We consider the following Schwartz function: ϕ := ⊗qϕq where

(i) For q finite, ϕq := ION−,N+⊗Zq i.e. the characteristic function of ON−,N+ ⊗ Zq.

(ii) For q =∞, we identify M2(R) = (K ⊗R) + (K ⊗R)⊥ = C + Cj and define

ϕΞ
∞(u + vj) = ūm1v̄m2e−2π(|〈u,u〉|+|〈vj,vj〉|) = ūm1v̄m2e−2π(|u|2+|Nj||v|2),

for u,v ∈ C, where

m1 = 2k + j1 + j2 and m2 = j1 − j2.

Lemma B.6. Suppose κθ :=

(
cos θ − sin θ
sin θ cos θ

)
∈ SO2(R) and κ1, κ2 ∈ (K ⊗ R)(1) ⊂

GL2(R). Then

rψ(κθ, (κ1, κ2))ϕ∞ = e−i(2k+2j2)θ · κ2k+2j1
1 · κ−(2k+2j2)

2 ϕ∞.

Proof. �

Lemma B.7. Let q be a finite prime and suppose α ∈ Uq and β, γ ∈ U ′q, are such that

det(α) = ν(β) · ν(γ)−1,

so that (α, (β, γ)) may be viewed as an element of R(Qq). Then

rψ(α, (β, γ))ϕq = ϕq.

Proposition B.8.

θtϕ(F j1
B × F

j2
B ) = C1 · 〈F j2

B , F
j2
B 〉 · F

j2 ,
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where

(16) C1 = (−1)j22−2j1−1 · j1!(2k + j1)!

j2!(2k + j2)!
· π−j1−1 · (−4iπΛ)j2−j1 · vol(U ′

(1)
).

Proof. Let F ′ := θtϕ(F j1
B ×F

j2
B ). We first show that F ′ = C ′1 ·F j2 for some constant C ′1. Note

that for u ∈ U and κ ∈ SO2(R), by Lemmas B.6 and B.7,

F ′(guκθ) =

∫ ∑
x

rψ(guκ, h · (u, 1))ϕ(x)(F j1
B × F

j2
B )(h · (u, 1))d(1)h = e−i(2k+2j2)θF ′(g)

Since θt(π⊗ π̄) = π, it follows by Casselman’s theorem that F ′ = C ′1 ·F j2 for some scalar C ′1.
Clearly, C ′1 is just the first Fourier coefficient of F ′. To find the value of C ′1, one computes
the Whittaker coefficients of F ′. As in [38] Sec. 3.2.1,

WF ′,ψ(g) =
1

2

∫
B×Q\B

×
A

Ψ(g, β)F j2
B (β)d×β,

where

Ψ(g, β) =

∫
B

det(g)
A

rψ(g, δ(α, 1))ϕ(1)F j1
B (βα)d(1)α.

We specialize to g0 = 1f ·
(
y 0
0 1

)
∞

with y > 0. Then

Ψ(g0, β) =

∫
B

(1)
A

rψ(1f ·
(
y 0
0 1

)
∞
, δ(α, 1) · δ(

( √
y 0

0
√
y

)
∞
, 1))ϕ(1)

·F j1
B (βα

( √
y 0

0
√
y

)
∞

)d(1)α

= y

∫
B

(1)
A

ϕ((
√
y)∞α

−1)F j1
B (βα)d(1)α.

This integral can be computed one place at a time since both F j1
B and ϕ are pure tensors.

We first consider finite primes q. In this case, if ϕq(α
−1
q ) 6= 0, then α−1

q ∈ U ′q. Hence αq ∈ U ′q
as well and F j1

B (βαq) = F j1
B (β). Thus∫

B(1)(Qq)

ϕq(α
−1
q )F j1

B (βαq)d
(1)αq = vol(U ′q

(1)
) · F j1

B (β).
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Next, we compute the local integral at ∞. Note first that for κ ∈ K(1)
∞ , we have

Ψ(g0, βκ) = y

∫
B

(1)
A

ϕ((
√
y)∞α

−1)F j1
B (βκα)d(1)α

= y

∫
B

(1)
A

ϕ((
√
y)∞α

−1κ−1)F j1
B (βα)d(1)α

= κm2−m1 · y
∫
B

(1)
A

ϕ((
√
y)∞α

−1)F j1
B (βα)d(1)α = κ−(2k+2j2)Ψ(g0, β).

This shows that Ψ(g0, β) is a scalar multiple of F j2
B . To find the value of this scalar, we we

use that SL2(R) is conjugate to SU(1, 1) in SL2(C) and that a model for π+
2k is provided

by analytic functions on the unit disc. Let us pick γ ∈ SL2(C) such that

γ−1SL2(R)γ = SU(1, 1),

and further satisfying

γ−1αγ =

(
α 0
0 ᾱ

)
,

for α ∈ (K⊗R)×. (As usual we think of (K⊗R)× as sitting inside SL2(R) via ι ◦ ξ.) Then
we define a scalar Λ ∈ K by

γ−1jγ = Λ ·
(

0 1
1 0

)
.

If ζ is the variable on the disc, then the action of SU(1, 1) is given by(
α β
β̄ ᾱ

)
· h(ζ) = (−βζ + ᾱ)−2kh

(
αζ − β̄

−βζ + ᾱ

)
.

In this model, the function hj : ζ 7→ ζj has weight 2k + 2j. Write(
α β
β̄ ᾱ

)
=

(
eiφ 0
0 e−iφ

)
·
(
a b
b a

)
·
(
eiψ 0
0 e−iψ

)
,

where a = cosh t/2 and b = sinh t/2. In these variables the measure on SU(1, 1) is dµ =
1

8π2 sinh tdtdφdψ.Then

y

∫
B

(1)
R

ϕ((
√
y)∞α

−1)π+
2k(α)hj1d

(1)α(ζ) = ζj1 · y1+k+j1 ·∫
eiφ(2j1−2j2)aj1+j2(Λ−1b)j1−j2e−2πy(a2+b2) · (1− b

a
e−2iφζ−1)j1 · (1− b

a
e2iφζ)−2k−j1dµ.

Suppose

(1−X)j1 =
∑
`≥0

c`X
`
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and
(1−X)−2k−j1 =

∑
`≥0

d`X
`.

Then

y

∫
B

(1)
R

ϕ((
√
y)∞α

−1)π+
2k(α)hj1(ζ)

= ζj2yk+j1+1Λj2−j1 ·

 ∑
`1,`2≥0

`1−`2=j1−j2

c`1d`2(b/a)`1+`2

 · aj1+j2bj1−j2e−2πy(a2+b2) · sinh tdt

= ζj2yk+j1+1Λj2−j1 ·
∫ ∑

0≤r≤j2

cr+(j1−j2)dr(b/a)2r+(j1−j2) · aj1+j2bj1−j2e−2πy(a2+b2) · sinh tdt

= 2−j1ζj2yk+j1+1Λj2−j1 ·
∑

0≤r≤j2

cr+(j1−j2)dr ·
∫ ∞

1

(t+ 1)j2−r(t− 1)r+j1−j2e−2πy(t−1)dt

= hj2(ζ)yk+j1+1Λj2−j1 · 2−j1 ·
∑

0≤r≤j2

cr+(j1−j2)dr · e−2πy

∫ ∞
0

(t+ 2)j2−rtr+j1−j2e−2πytdt

= hj2(ζ)yk+j1+1Λj2−j1 · 2−j1e−2πy ·∑
0≤r≤j2

0≤i≤j2−r

cr+(j1−j2)dr

∫ ∞
0

(
j2 − r
i

)
ti+r+j1−j22j2−r−ie−2πytdt

= hj2(ζ)Λj2−j1 · e−2πy · I(y)

where

I(y) = 2−j1yk+j1+1
∑

0≤r≤j2
0≤i≤j2−r

(−1)j2−r2j2−i−r
(

j1

j2 − r

)(
2k + j1 − 1 + r

r

)(
j2 − r
i

)
·

(2πy)−(i+r+j1−j2+1)Γ(i+ r + j1 − j2 + 1)

= 2−j1(2π)−j1−1yk ·∑
0≤r≤j2

0≤i≤j2−r

[
(−1)j2−r

(
j1

j2 − r

)(
2k + j1 − 1 + r

r

)(
j2 − r
i

)
Γ(i+ r + j1 − j2 + 1)

]
(4πy)j2−i−r

= ykqj(4πy),

for a polynomial qj. The leading coefficient of qj is easy to compute, since it corresponds to
the case i = r = 0. It is

c := 2−j1(2π)−j1−1 · (−1)j2
(
j1

j2

)
Γ(j1 − j2 + 1) = 2−2j1−1 · (−1)j2π−j1−1 · j1!

j2!
.
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Thus it follows (though this is not directly evident from the formula above) that

I(y) = c · ykpj2(4πy).

Finally, we note that if FB corresponds to h1, then Rj(FB) corresponds to

2k(2k + 1) · · · (2k + j) · ijhj,

hence F j
B corresponds to

1

(4π)j
· 2k(2k + 1) · · · (2k + j)ijhj.

Thus if F j1
B corresponds to hj1 , then hj2 corresponds to

(4π)j2−j1(2k + j2 + 1) · · · (2k + j1)ij1−j2F j2
B .

Combining the local computations, we find

Ψ(g0, β) = c(−4iπΛ)j2−j1 · (2k + j2 + 1) · · · (2k + j1) · vol(U ′
(1)

) · ykpj2(4πy)e−2πy · F j2
B (β).

Hence

WF ′,ψ(g0) = c(−4iπΛ)j2−j1 · (2k + j2 + 1) · · · (2k + j1) vol(U ′
(1)

) · ykpj2(4πy)〈F j2
B , F

j2
B 〉,

and

F ′ = (4π)j2 · c(−4iπΛ)j2−j1 · (2k + j2 + 1) · · · (2k + j1) · vol(U ′
(1)

) · 〈F j2
B , F

j2
B 〉 · F

j2 .

Thus F ′ = C1 · 〈F j2
B , F

j2
B 〉 · F j2 , where

C1 = (−1)j222j2−2j1−1 · j1!(2k + j1)!

j2!(2k + j2)!
· πj2−j1−1 · (−4iπΛ)j2−j1 · vol(U ′

(1)
).

�

Remark B.9.

vol(U ′
(1)

) = ζ(2)−1 ·
∏
q|N+

1

q + 1
·
∏
q|N−

1

q − 1
.

Proposition B.10.

θϕ(F j2) = C2 · (F j1
B × F

j2
B ),

where
C2 = C1 · Im(τ)2k+2j1 · 〈F, F 〉/〈FB, FB〉.

Proof. By a calculation as in (17) above and another application of Casselman’s theorem, we

have θϕ(F j2) = C2 · (F j1
B ×F

j2
B ) for some constant C2. To compute C2, one studies the theta

lift in the opposite direction and uses the seesaw principle. Indeed, the seesaw principle and
Proposition B.8 imply that

C2〈F j1
B , F

j1
B 〉〈F

j2
B , F

j2
B 〉 = 〈θϕ(F j), F j1

B × F
j2
B 〉 = 〈F j, θtϕ(F j1

B × F
j2
B )〉 = C1〈F j, F j〉〈F j2

B , F
j2
B 〉.
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i.e.
C2 = C1 · 〈F j, F j〉/〈F j1

B , F
j1
B 〉.

But
〈F j1 , F j1〉/〈F j1

B , F
j1
B 〉 = Im(τ)2k+2j1 · 〈F, F 〉/〈FB, FB〉,

whence

(17) C2 = C1 · Im(τ)2k+2j1 · 〈F, F 〉/〈FB, FB〉.
�

B.4. An application of seesaw duality. Let V1 = K (viewed as a subspace of V ) and
V2 = V ⊥1 . Then

GO(V1)0 ' GO(V2)0 ' K×,

H := G(O(V1)×O(V2))0 = G(K× ×K×),

and via this identification the map δ : K× ×K× → H is

δ(α, β) = (αβ−1, α(βρ)−1).

Since µ ·N−1
K has trivial central character (i.e. its restriction to A×Q is trivial), there exists a

Hecke character η of K of infinity type (1, 0), such that

µ ·N−1
K = η · (ηρ)−1,

where ηρ(x) := η(x̄). Set

χ1 := (ηρ)2k+j1+j2 χ2 := ηk+j1(ηρ)−(k+j2) = ηk+j1(ηρ)k+j2N
−(k+j2)
K ,

ω1 := χ1 ·N
− 1

2
(2k+j1+j2)

K , ω2 := χ2 ·N
− 1

2
(j1−j2)

K .

Then
ω1 · ω2 = (ηρ)k+j1ηk+j1N

−(k+j1)
K = (ηρ)k+j1(η̄)−(k+j1) = (µ̄)−(k+j1)Nk+j1

K ,

ω1 · ωρ2 = ηk+j2(ηρ)−(k+j2) = µk+j2 ·N−(k+j2)
K ,

and

ω1(xy−1) · ω2(xȳ−1) = (ω1ω2)(x) · (ω1ω
ρ
2)−1(y)

= (µ̄)−(k+j1)Nk+j1
K (x) · (µ−(k+j2)Nk+j2

K )(y).

Thus

aj1 · aj2 =

∫
K×\A×K×K×\A

×
K

(F j1
B × F

j2
B )(x, y) ·

(µ̄)−(k+j1)Nk+j1
K (x) · (µ−(k+j2)Nk+j2

K )(y)d×xd×y

=
1

C2

∫
H(Q)\H(A)

θϕ(F j2)(h) · (ω1, ω2)(h)dh

=
1

C2

∫
GL2(Q)\GL2(A)

F j2(g)θtϕ(ω1, ω2)(g)dg
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We now show that θtϕ(ω1, ω2), which is ostensibly a sum of products of theta functions
associated to ω1 and ω2 (with different choices of Schwartz function) may in fact be replaced
by just a single product of two theta functions. Notice that the Schwartz function ϕv splits
as a pure tensor in S(V1(Qv)) ⊗ S(V2(Qv)) for v = ∞ and for all finite primes v such that
v is unramified in K. For ramified primes this is no longer the case, however we shall show
below that at such primes we can replace this sum of pure tensors by a different pure tensor
in computing the integral above.

We work locally now: suppose K = Qp(ζ), where p is an odd prime, ζ2 = π, with π being
a uniformizer in Qp. We may assume B = M2(Qp), OB = M2(Zp) , the embedding ξ is given
by

a+ bζ 7→
(

a b
bπ a

)
and j =

(
1 0
0 −1

)
. Then

ϕp =

p−1∑
i=0

ςi ⊗ ϑi

where
ςi = IZp+( i

π
+Zp)ζ ϑj = I[Zp+( j

π
+Zp)ζ]j.

We write I(ςi, ϑj) for the integral above where we fix the Schwartz function outside p and
take ςi ⊗ ϑj as the Schwartz function at p. Then

I =

p−1∑
i=0

I(ςi, ϑi).

Set Jij := I(ςi, ϑj) so that

I =

p−1∑
i=0

Jii.

Note that
εp := ηp(−1) = ηp(ξ/ξ̄) = ηp(η

ρ
p)−1(ξ) = µp(ξ)p

−1.

Then
ω1,p(−1) = ω2,p(−1) = εδp

where δ = 0 or 1 according as j1 − j2 is even or odd. One sees then that

εδpJij = J(−i)j = Ji(−j).

Since F is right-invariant by

(
1 1
0 1

)
p

, we see that Jij = 0 unless i ≡ ±j mod p. Set

ς := Iζ−1OK =

p−1∑
i=0

ςi ϑ := Iζ−1OK j =

p−1∑
j=0

ϑj.
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Then

I(ς, ϑ) = J00 +

p−1∑
i=1

(Jii + Ji(−i)).

Now consider I(ςi, ϑ). Since F is right invariant by

(
0 1
−1 0

)
p

, we have

I(ςi, ϑ) = I(ς̂i, ϑ̂).

But ϑ̂ = p1/2ϑ0 and

ς̂i(x+ yζ) = p−1/2ψ(−2yi)IZp(x)I 1
p
Zp

(y) = p−1/2

p−1∑
u=0

ψ(−2ui/π)ςu.

Hence for i 6= 0,

(1 + εδp)Jii = Jii + Ji(−i) = I(ςi, ϑ) =

p−1∑
u=0

ψ(−2ui/π)I(ςu, ϑ0) = J00,

so that Jii = J00 for such i. Finally we see that

I = J00 +
1

2
(p− 1)J00 =

1

2
(p+ 1)J00.

Consequently, we get:

Theorem B.11. Suppose j1 ≡ j2 mod 2. Then

aj1aj2 =
1

C2

∏
q|DK

q + 1

2
· 〈θϕ(χ1), δj2f · θϕ′(χ2)〉

where θϕ(χ1) is the theta lift of the character χ1 from the quadratic space K with Schwartz
function ϕ = ⊗vϕv, where

ϕq = IOK⊗Zq ϕ∞(x) = x̄m1e−2π|〈x,x〉|

and θϕ′(χ2) is the (holomorphic) theta lift of χ2 from the quadratic space (Kj,−〈·, ·〉) with
Schwartz function ϕ′ = ⊗vϕ′v where

ϕ′q = IM⊗Zq ϕ′∞(xj) = x̄m2e−2π|〈xj,xj〉|

with
M := Kj ∩ ON−,N+ .
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C. Computing on Shimura curves II: Implementing the Shimizu lifting
(by PAUL NELSON)

We consider the problem of computing the values f(z) taken by modular forms f on
Shimura curves. To be precise, let f be a eigencuspform for the full Hecke algebra H on a
Shimura curve X, and suppose that one knows the character λf of H associated to f up to
some fixed but large precision. If X is non-compact, then f admits a Fourier expansion whose
coefficients may be read off from λf , but if X is compact, then such Fourier expansions are not
available; our aim in this note is to explain in some detail how one can nevertheless compute
the values f(z) using the adjoint (as pinned down by Watson) of Shimizu’s realization of the
Jacquet-Langlands correspondence.

Before doing so, let us review briefly the basic objects of study. Let H = {x+ iy : y > 0}
be the upper half-plane with the usual action of GL2(R)+ (the group of real matrices with
positive determinant) by fractional linear transformations. Recall the weight k slash operator
on functions f : H→ C: for α = ( a bc d ) ∈ GL2(R)+, f |kα is the function

(18) f |kα(z) = det(α)k/2(cz + d)−kf(αz).

Let k be a positive even integer. Recall that a holomorphic modular form of weight k for
a lattice Γ < SL2(R) is a holomorphic solution f : H → C to the system of functional
equations f |kγ = f (γ ∈ Γ) that is regular at the cusps of Γ (see [31]). Let Mk(Γ) denote the

space of such modular forms and Sk(Γ) the subspace of cusp forms. Let Γ̃ denote the monoid
of all α ∈ GL2(R)+ for which ΓαΓ is a finite union of either left or right Γ-cosets. Both

Mk(Γ) and Sk(Γ) are modules for the Hecke algebra H(Γ) = C[Γ\Γ̃/Γ] where the action
linearly extends f |kΓαΓ =

∑
f |kαj if ΓαΓ = tΓαj. An eigencuspform f , that is to say an

eigenfunction of H(Γ) in Sk(Γ), corresponds to a character (one-dimensional representation)
λf of H(Γ) occuring in the module Sk(Γ) determined by f |ϕ = λf (ϕ)f for all ϕ ∈ H(Γ).

Suppose that one is given Sk(Γ) as an abstract H(Γ)-module; this situation is a practical
one to consider because certain algorithms for computing the spaces Sk(Γ) (modular symbols,
...) return it essentially in this form. Then, how can one go about numerically computing the
values f(z) (z ∈ H) for eigencuspforms f ∈ Sk(Γ)? To make this question meaningful, we
should restrict to Γ for which any eigencuspform f is determined by the associated character
λf of H(Γ), i.e., for which each character of H(Γ) occurs in Sk(Γ) with multiplicity at most

one. This condition generally fails if Γ̃ is too small, but is satisfied if Γ is the group of norm
one units in an Eichler order in an indefinite rational quaternion algebra B equipped with a

fixed real embedding, in which case Γ̃ = B×(Q)+ is large and Γ\H is called a Shimura curve.
For example, take B = M2(Q) to be the split (indefinite) rational quaternion algebra. Any
Eichler order of level N in M2(Q) is conjugate to ( Z Z

NZ Z ), whose group of norm one units is
denoted Γ0(N). Since ( 1 1

0 1 ) ∈ Γ0(N), any modular form f ∈ Mk(Γ0(N)) admits a Fourier
expansion

(19) f(z) =
∑
n≥0

af (n)e2πinz.
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If moreover f is an eigencuspform, then one can read off the coefficients af (n) (and hence
the values f(z)) from knowledge of the associated character λf of H(Γ0(N)); for example, if
n is squarefree and prime to N , then

(20) af (n) = af (1)nk/2−1λf

(
Γ0(N)

[
n

1

]
Γ0(N)

)
.

On the other hand, suppose B is a non-split (B 6∼= M2(Q)) indefinite (B ↪→M2(R)) rational
quaternion algebra and Γ is the group of norm one units in an Eichler order in B; in that
case Γ contains no unipotent elements. Consequently Γ\H has no cusps, Γ\H is a compact
Shimura curve, and a Fourier expansion of the shape (19) is not available for forms f ∈
Mk(Γ); thus it is not immediately obvious how to recover the values f(z) of an eigencuspform
from its character λf .

One way to get around this is via an explicit form of the Jacquet-Langlands correspon-
dence, which specifies a connection between the sets of eigencuspforms in Sk(Γ) for Γ arising
from the unit groups of orders in different quaternion algebras B. First, recall that the
set of isomorphism classes of indefinite rational quaternion algebras B is put in bijection
with the set of finite even subsets ΣB of the primes by taking for ΣB the set of all primes
p for which B does not split over Qp, i.e., for which B ⊗Q Qp 6∼= M2(Qp); for details on this
and what follows, see [36]. The integer dB =

∏
p∈ΣB

p is the reduced discriminant of B.

Our assumption that B is indefinite means B ⊗Q R ∼= M2(R), so we may fix an embedding
B ↪→M2(R). Let N be a positive integer prime to dB. An Eichler order R0(N) in B of level
N is an intersection of two maximal orders in B having the property that for each prime
p - dB, there exists an isomorphism B ⊗Q Qp

∼= M2(Qp) taking R0(N)⊗Z Zp to the Zp-order(
Zp Zp

NZp Zp

)
.

Fix once and for all a representative B, together with a fixed real embedding B ↪→ M2(R),
for each isomorphism class of indefinite rational quaternion algebras. For each such B and
each integer N prime to dB, fix an Eichler order RdB

0 (N) in B and let ΓdB0 (N) denote the

group of norm one units in RdB
0 (N); we may and shall take M2(Q) ↪→ M2(R) to be the

standard embedding, R1
0(N) = R0(N) := ( Z Z

NZ Z ) and Γ1
0(N) = Γ0(N).

Now set Γ′ = ΓdB0 (N) and Γ = Γ0(dBN). The Jacquet-Langlands correspondence asserts,
among other things, that there exists an injection CfB 7→ Cf from the set of eigenspaces
for H(Γ′) � Sk(Γ

′) to those for H(Γ) � Sk(Γ), characterized for instance by a compatibility
between the actions of the isomorphic copies in H(Γ′) and H(Γ) of the local Hecke algebra
C[GL2(Zp)\GL2(Qp)/GL2(Zp)] for each p - dBN . Shimizu gave an explicit realization of
the map “fB ⊗ fB → f” as a theta correspondence, and Watson pinned down the precise
constant of proportionality in the dual correspondence “f 7→ fB ⊗ fB.” An imprecise form
of his result asserts that for any z1, z2 ∈ H, one can find a certain (non-holomorphic) theta
series Θz1,z2 on Γ0(dBN) such that if af (1) = 1 and 〈f, f〉 = 〈fB, fB〉 (with inner products as
in the statement of [38, Theorem 1]), so that f is uniquely determined and fB is normalized
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up to a scalar of modulus one, then

(21) Im(z1)k/2Im(z2)k/2fB(z1)fB(z2) =
1

2

∫
Γ0(dBN)\H

f(z)Θz1,z2(z) yk+1dx dy

y2
.

The RHS of (21) is readily calculable. Indeed, let

(22) F = {x+ iy : |x| ≤ 1/2, |y| ≥ 1}
be the usual fundamental domain for Γ0(1)\H. Substituting the Fourier expansions for f̄
and Θz1,z2 , we see that their product may be written as an infinite linear combination of
terms e2πibxe−2πcy for reals b and c. Thus if dB = N = 1, then RHS of (21) is an infinite
linear combination of the integrals

(23)

∫
F
yk−1e2πibxe−2πcy dx dy.

These integrals decrease rapidly with c, so only a few terms are required to compute (21) to
high precision. For general dB and N , one takes as a fundamental domain for Γ0(dBN)\H
the essentially-disjoint union ∪γγF taken over coset representatives γ ∈ Γ0(1)/Γ0(dBN);
the problem then reduces to computing the Fourier expansions of each Γ0(1)-translate of f̄
and Θz1,z2 . Note that it is essential to partition the fundamental domain for Γ0(dBN)\H as
above because the Fourier expansion at a given cusp converges very slowly away from that
cusp (e.g., the series (19) converges slowly if y is too small). In summary, to compute the
values of fB using (21), we must:

(1) Write down the Fourier expansion of f at each cusp of Γ0(dBN).
(2) Define the theta series Θz1,z2 ; this is just a matter of extracting its definition from

[38, §2].
(3) Write down the Fourier expansion of Θz1,z2 at each cusp of Γ0(dBN).

It is then straightforward to express the RHS of (21) in terms of the integrals (23), which
we can evaluate using a general-purpose integrator. The first step is particularly easy when
N (and hence dBN) is squarefree, because then the normalizer in Γ0(1) of Γ0(dBN), whose
action on Sk(Γ0(dBN)) is diagonalizable, acts transitively on the set of cusps of Γ0(dBN), so
one can directly read off the Fourier expansion of an eigencuspform at one cusp from that
at another. Since Watson also restricts to the case that N is squarefree in his definition of
Θz1,z2 and his proof of the formula (21), let us assume henceforth that this is the case.

It will be convenient to work adelically in defining Θz1,z2 and computing its Fourier expan-
sion at each cusp, so let us recall that to a function (not necessarily holomorphic) f : H→ C
that satisfies f |kγ = f for all γ ∈ ΓdB0 (N) one can associate a function F : B×(A) → C by
the formula

(24) F (γg∞κ0) = (f |kg∞)(i) if γ ∈ B×(Q), g∞ ∈ B×(R)+, κ0 ∈
∏
p

(R0(N)⊗ Zp)
×

that satisfies F (γgκ∞κ0z) = χk(κ∞)F (g) for all γ ∈ B×(Q), κ0 as above, z in the center
of B×(A), and κ∞ in the stabilizer in B×(R)+ of i, where under our fixed isomorphism
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B(R) ∼= M2(R) the character χk becomes identified with
(

cos θ sin θ
− sin θ cos θ

)
7→ eikθ; conversely, one

can go from F to f by the formula

(25) yk/2f(x+ iy) = F |B×(R)(n(x)a(y)), n(x) :=

[
1 x

1

]
, a(y) :=

[
y1/2

y−1/2

]
.

One can similarly pass between functions on ΓdB0 (N)\H and those on B1(Q)\B1(A), where
B1 is the subgroup of norm one elements in B×. Our discussion above applies in particular
when dB = 1, in which case B× = GL2 and B1 = SL2.

We turn to the task of defining Θ; for this we must first recall the definition of the Weil
representation attached to our indefinite quaternion algebra B, equipped with its reduced
norm ν and regarded as a quadratic space (B, ν). Let e = ⊗ev ∈ Hom(A/Q, S1) be the
standard additive character, characterized by requiring e∞(x) = e2πix. Let S(VA) = ⊗S(Vv)
denote the space of Schwarz-Bruhat functions ϕ on V (A); this space is spanned by pure
tensors ϕ = ⊗ϕv. The group SL2(A) acts on S(VA) by the Weil representation ω: if ϕ =
⊗ϕv ∈ S(VA) and g = (gv) ∈ SL2(A), then ω(g)ϕ = ⊗ωv(gv)ϕv, where

(26) ωv

([
1 x

1

] [
t
t−1

])
ϕv(α) = |t|4/2v ev(xν(α))ϕv(tα),

(27) ωv

([
1

−1

])
ϕv(α) = (−1)1v|dBFϕv(α),

and the Fourier transform Fϕv(α) :=
∫
B(Qp)

ϕ(β)ev(αβ) dβ is defined with respect to a

measure dβ for which FFϕv(α) = ϕv(−α). (Here 1v|dB is 1 if v divides dB and 0 otherwise.)
The group B××B× acts (by orthogonal similitudes) on B via the formula (g1, g2)·b = g1bg

−1
2 ,

which gives a morphism from the subgroup B×νB of elements (g1, g2) with ν(g1) = ν(g2) into
the orthogonal group of (B, ν). For ϕ ∈ S(VA), (g1, g2) ∈ (B× ×ν B×)(A) and h ∈ SL2(A)
define the theta kernel

(28) θϕ(h; g1, g2) =
∑
α∈B

ω(h)ϕ(g−1
1 αg2).

It is easy to see from the definition of ω and the Poisson summation formula that h 7→
θϕ(h; g1, g2) is left SL2(Q)-invariant for any fixed g1, g2.

We take Θ(h; g1, g2) = θϕ(h; g1, g2) for the following specific choice of ϕ = ⊗ϕv. To

alleviate notation, let us temporarily set R = RdB
0 (N) and Rp = RdB

0 (N) ⊗Z Zp ↪→ B(Qp).
For a finite prime p, let

(29) ϕp = vol(R×p )−11Rp

where 1Rp is the characteristic function of Rp and vol is defined with respect to a measure on
B×(Qp) assigning volume one to the unit group of a maximal order. Since we have assumed
that N is squarefree, we have ϕp = 1Rp if p - dBN and ϕp = (p+ 1)1Rp if p - dB, p|N . Let

(30) ϕ∞ = Xke−2πP
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with X,P given by

(31) X

([
a b
c d

])
=

1

2
(a+ d+ i(b− c)), P

([
a b
c d

])
=

1

2
(a2 + b2 + c2 + d2).

under our fixed identification B(R) ∼= M2(R). We remark that the positive definite quadratic
form P : M2(R)→ R is a majorant for the (2, 2)-signature determinant form; there is a four-
dimensional real manifold of such majorants and a more intrinsic definition of this particular
choice of X and P goes as follows. Let ι : C → M2(R) be the R-algebra embedding that
sends i to ( 0 1

−1 0 ). Let ε = ( 1
−1 ), which has the property that ε2 = 1 and ει(z)ε = ι(z̄) for

each z ∈ C. Define X, Y : M2(R) → C by requiring that α = ι(X(α)) + ει(Y (α)) for each
α ∈ M2(R). Then det = |X|2 − |Y |2 and P = |X|2 + |Y |2. In other words, P is the unique
positive-definite majorant for M2(R) regarded as a (1, 1)-signature hermitian space over C
via the embedding ι.

We are now prepared to state a precise form of the identity (21). Let N be a squarefree

integer prime to dB, let Γ = Γ0(dBN), let Γ′ = ΓdB0 (N), and let f ∈ Sk(Γ) and fB ∈ Sk(Γ′)
be eigencuspforms such that f is the Jacquet-Langlands lift of fB. Define F : GL2(A)→ C
and FB : B×(A) → C by the recipe (24). We normalize so that af (1) = 1 and 〈FB, FB〉 =
〈F, F 〉 with the inner products as in the statement of [38, Theorem 1]. Choose a Haar
measure dh on SL2(Q)\SL2(A) so that if G : SL2(Q)\SL2(A)→ C is right-invariant under
SO(2)×

∏
p SL2(Zp), then

(32)

∫
SL2(Q)\SL2(A)

G(h) dh =

∫
F
G|SL2(R)(n(x)a(y))

dx dy

y2

with F the fundamental domain (22) for SL2(Z)\H and n(x), a(y) as in (25). Then [38,
Theorem 1] implies that for any g1, g2 ∈ (B× ×ν B×)(A), we have

(33) FB(g1)FB(g2) =
1

2

∫
SL2(Q)\SL2(A)

F (h)Θ(h; g1, g2) dh.

This formula applies in particular when g1, g2 ∈ B1(A) have norm one, which is the only case
that we shall need to consider. The integrand on the RHS of (33) is right-invariant under
the subgroup

(34) K0(dBN) := SO(2)×
∏
p

(R0(dBN)⊗ Zp)
1

of SL2(A), so the integral descends to Γ0(dBN)\H and we see that (21) holds with

(35) Θz1,z2(z) = c
∑

α∈RdB0 (N)

X(α′)ke2πixν(α′)e−2πyP (α′), α′ := g−1
1 αg2

where g1, g2 ∈ B(R) are chosen so that gj ·i = zj (j = 1, 2) and c = [Γ0(N) : Γ0(dBN)]−1. This

is a theta series attached to the rational quaternary quadratic form RdB
0 (N) 3 α 7→ ν(α′)

of signature (2, 2) and the spherical harmonic α 7→ X(α′)k of degree k. The inversion
formulae for such series, which allow one to compute their Fourier expansions at various
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cusps, are conveniently packaged into the machinery of the Weil representation. To put
this into practice, let us take as a fundamental domain for SL2(Q)\SL2(A) the essentially-
disjoint union of the sets Gd, indexed by the divisors d of the squarefree integer dBN , defined
as follows. Let w denote the Weyl element w = ( 1

−1 ) of SL2. Denote temporarily by Up
the subgroup (R0(dBN) ⊗ Zp)

1 of SL2(Zp). Let Gd be the set of all g = (gv) ∈ SL2(A) for
which

• g∞ = n(x)a(y)κ∞ with x+ iy in the standard fundamental domain F for SL2(Z)\H
and κ∞ ∈ SO(2),
• gp ∈ Up if p - dBN , and
• gp ∈ n(a)wUp for some a ∈ {0, 1, . . . , p− 1} if p - dBN .

Thus we have partitioned (gv) according to whether, for each prime divisor p of dBN , the
reduction of gp modulo p belongs to the big or little Bruhat cell of SL2(Z/p). Let w(d) ∈∏

p SL2(Zp) be such that w(d)p = 1 if p - d and w(d)p = w if p|d. Define

(36) Gd(x+ iy) = F (n(x)a(y)× w(d))Θ(n(x)a(y)× w(d); g1, g2).

Then the integral on the RHS of (33) is just

1

[Γ0(1) : Γ0(dBN)]

∑
d|dBN

∫
F

∑
a∈Z/dZ

Gd(z + a) dx dy
y2 ,

so the problem is essentially to compute the usual Fourier expansion of Gd at ∞. To do so,
we shall compute separately F (n(x)a(y)× w(d)) and Θ(n(x)a(y)× w(d)).

Let us recall the formula for F (n(x)a(y)× w(d)) given by Atkin-Lehner theory. Let

(37) f(z) =
∑
n≥1

λf (n)n
k−1

2 e2πinz

be the usual Fourier expansion for f , which we have normalized so that λf (1) = 1 and the
Deligne bound reads |λf (p)| ≤ 2. For a prime p|dBN we have εf (p) := p1/2λf (p) ∈ {±1}.
For any divisor d|dBN , let εf (d) :=

∏
p|d εf (p); then

(38) F (n(x)a(y)× w(d)) = µ(d)εf (d)
(y
d

)k/2
f
(z
d

)
=

µ(d)

af (d)
yk/2

∑
n≥1

λf (n)n
k−1

2 e2πin
d
z.

We turn now to Θ(n(x)a(y)× w(d)); see [38, §2] for details. Since in general

(39) Θ(hh′; g1, g2) = θϕ(hh′; g1, g2) = θω(h′)ϕ(h; g1, g2),

let us first compute ω(w(d))ϕ. For v - d we have ωv(w(d)v)ϕv = ϕv. If v = p|d, then

w(d)p = w, so ωp(w(d)p)ϕp = (−1)1|p|dBFϕp; we have

F1
R
dB
0 (N)⊗Zp

= p−11
R
dB
0 (N ;d)⊗Zp

for some lattice that we denote by RdB
0 (N ; d) for lack of imagination: if p| gcd(d,N), the iso-

morphism B(Qp) ∼= M2(Qp) taking RdB
0 (N)⊗Zp to

(
Zp Zp
pZp Zp

)
takes RdB

0 (N ; d) to
(

Zp p−1Zp
Zp Zp

)
,
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while if p| gcd(d, dB) then RdB
0 (N ; d)⊗Zp is the inverse of the unique maximal ideal in B(Qp).

Let ψ(N) =
∏

p|N(p+ 1) = [ΓdB0 (1) : ΓdB0 (N)]. Then

(40) Θ(n(x)a(y)× w(d); g1, g2) =
µ((d, dB))ψ(N)

d
yk/2+1

∑
α∈RdB0 (N ;d)

[Xke2πixνe−2πyP ](α′)

with α′ = g−1
1 αg2 as before, and so

1

[Γ0(1) : Γ0(dBN)]

∑
a∈Z/dZ

Gd(z + a) =
yk+1µ((d,N))

ψ(dB)af (d)

×
∑
n∈N

∑
α∈RdB0 (N ;d)

n/d−ν(α′)∈Z

af (n)e2πin
d

(−x+iy)[Xke2πixνe−2πyP ](α′).

(41)

Summing over d|dBN and integrating over F gives, finally, the formula
(42)

FB(g1)FB(g2) =
1

2

∑
d|dBN

µ((d,N))

ψ(dB)af (d)

∑∑
n∈N

α∈RdB0 (N ;d)
n/d−ν(α′)∈Z

af (n)Xk(α′)Ik−1

[
ν(α′)− n

d
, P (α′) +

n

d

]
,

where Ia(b, c) :=
∫
F y

ae2πibxe−2πcy dx dy.
The computational challenges involved in making this formula practical are

(1) computing the coefficients af (n) (which can be done by several software packages,
such as SAGE)

(2) determining an explicit basis for the lattice RdB
0 (N ; d),

(3) rapidly enumerating those vectors α ∈ RdB
0 (N ; d) for which P (α′) is small, and

(4) rapidly computing the integrals Ia(b, c), or caching them for later reuse.

Some further topics worth addressing include

(1) computing derivatives of FB by differentiating both sides of (28) with respect to g1

or g2, which amounts to replacing φ∞ by its image under a suitable raising operator
(I’ve already implemented this),

(2) factorizing the rank four lattice g−1
1 RdB

0 (N ; d)g2 into “sums of products of” rank
two lattices for special values of g1, g2 (CM points) and using this to automate the
derivation of explicit relations between values/periods of modular forms on Shimura
curves and special values of L-series (à la Waldspurger),

(3) spelling out all of the above over a totally real field,
(4) ...?

I have written some SAGE code to implement the formula (42) and its generalization in
which one evaluates the `1th derivative with respect to z1 and `2th derivative with respect
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to z2 of fB(z1)fB(z2). Here are some example illustrating a few simple cases. (Because the
software is still under development, the notation might be a bit inconsistent between the
various examples.)

Example C.1. Take dB = N = 1, k = 12, and

∆ = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn ∈ S12(1), q := e2πiz

the Ramanujan function. One obtains ∆(i) ≈ 0.00178536985064215 by summing the first
9 terms in its series expansion and gets the same answer after summing 20 terms. Thus
|∆(i)|2 ≈ 3.18754550358197e−6. The formula above gives |∆(i)|2 = 1

2

∫
∆Θ for a theta series

Θ. Here is some (hopefully self-explanatory) output from a session with SAGE illustrating
this, using some code I’ve written; we get the answer correct to one part in a billion. (The
unused parameters l1, l2 can be used to take derivatives.)

sage: delta = Form(CuspForms(1,12).0,20); delta

Form of level 1 and weight 12 and precision 20.

sage: delta.evaluate(I)^2

3.18754550358197e-6

sage: delta.at_prec(9).evaluate(I)^2

3.18754550358197e-6

sage: delta.dual()

Form of level 1 and weight -12 and precision 20.

sage: theta = Theta(OO(1),12,0,0,I,I,11); theta

Theta series with k=12, z1=I, z2=I, l1=0, l2=0, prec=11

associated to an order of discriminant 1 with basis:

[1 0]

[0 0]

[0 1]

[0 0]

[0 0]

[1 0]

[0 0]

[0 1]

sage: delta.dual()*theta

Product of:

* Form of level 1 and weight -12 and precision 20.

* Theta series with k=12, z1=I, z2=I, l1=0, l2=0, prec=11

associated to an order of discriminant 1 with basis:

[1 0]

[0 0]

[0 1]



52

[0 0]

[0 0]

[1 0]

[0 0]

[0 1]

sage: 0.5*(delta.dual()*theta).integrate()

3.18754550643e-06 - 8.70739974961e-22*I

sage: (0.5*(delta.dual()*theta).integrate()) / delta.evaluate(I)^2

1.00000000089 - 2.73169425811e-16*I

Example C.2. Let’s give an example that involves computing on a non-split quaternion
algebra. (A small part of my notes on this example, such as the generating set for the unit
group of the maximal order, may have been taken from some paper; if so, I can’t remember
which one.) Define elements i, j, k ∈M2(R):

(43) i =

[√
2

−
√

2

]
, j =

[
1

−3

]
, k = ij =

[
0
√

2

3
√

2 0

]
.

Then, identifying Q with the subalgebra of diagonal matrices in M2(R) we have i2 = 2,
j2 = −3, and ij = −ji. The rational quaternion algebra B := Q + Qi + Qj + Qk is the
unique such algebra of reduced discriminant dB = 6. If we set

e1 = 1 =

[
1

1

]
, e2 =

i+ k

2
=

[
1/
√

2 1/
√

2

3/
√

2 −1/
√

2

]
,

e3 =
1 + j

2
=

[
1/2 1/2
−3/2 1/2

]
, e4 = k =

[
0
√

2

3
√

2 0

]
,

then R6
0(1) := Ze1 + Ze2 + Ze3 + Ze4 is a maximal order in B (i.e., an Eichler order of level

1). The group Γ6
0(1) of norm one units is generated by

γ1 =
i+ 2j − k

2
=

[
1/
√

2 −1/
√

2 + 1

−3/
√

2− 3 −1/
√

2

]
, γ2 =

i− 2j + k

2
=

[
1/
√

2 1/
√

2− 1

3/
√

2 + 3 −1/
√

2

]
,

γ3 =
1 + j

2
=

[
1/2 −1/2
−3/2 1/2

]
, γ4 =

1 + 3j − 2k

2
=

[
1/2 −

√
2 + 3/2

−3
√

2− 9/2 1/2

]
,

The space S4(Γ0(6)) is one-dimensional. Let f = q − 2q2 − 3q3 + 4q4 + 6q5 + · · · be its
unique normalized eigencuspform. By the (inverse?) Jacquet-Langlands correspondence, f
transfers to an eigencuspform fB ∈ S4(Γ6

0(1)), which we may normalize as above up to a
scalar of modulus one. We shall compute its value at a CM point and check its rationality
up to a certain transcendental factor. The element

(44) α4 := γ2
1γ2 =

[
−1/
√

2 −1/
√

2 + 1

−3/
√

2− 3 1/
√

2

]
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satisfies α2
4 + 1 = 0, and so induces an optimal embedding Z[i] ↪→ R6

0(1). Its unique fixed
point in H under our fixed real embedding of B is

(45) τ4 :=

√
2− 1

3
(1 + i

√
2) ≈ 0.138071 + 0.195262i.

Define Ω4 = 2.62205755429212; this is some period for an elliptic curve with CM by Q(i).
In the SAGE session quoted below, we compute (using the integral formula that expresses
|fB(τ4)|2 as the Petersson inner product of f with a certain theta series) that

(46)

(
π

Ω4

)2((4+1)−1)

|fB(τ4)|2 ≈ 0.000289351851518.

Note that

(47) 1/0.000289351851518 ≈ 3456.00000398750,

which is suspiciously close to the integer 3456 = 27 · 33.

sage: f = Form(CuspForms(6,4).0,5); f

Form of level 6 and weight 4 and precision 5.

sage: tau4

1/3*(I*sqrt(2) + 1)*(sqrt(2) - 1)

sage: alpha4

[ -1/2*rt2 -1/2*rt2 + 1]

[-3/2*rt2 - 3 1/2*rt2]

sage: (act(alpha4,tau4) - tau4).n()

8.32667268468867e-17 + 1.66533453693773e-16*I

sage: alpha4^2

[-1 0]

[ 0 -1]

sage: omega4

2.62205755429212

sage: theta = Theta(OO(6),4,0,0,tau4,tau4,9); theta

Theta series with k=4, z1=1/3*(I*sqrt(2) + 1)*(sqrt(2) - 1),

z2=1/3*(I*sqrt(2) + 1)*(sqrt(2) - 1), l1=0, l2=0, prec=9

associated to an order of discriminant 6 with basis:

[1 0]

[0 1]

[ 1/2*rt2 1/2*rt2]

[ 3/2*rt2 -1/2*rt2]

[ 1/2 1/2]

[-3/2 1/2]

[ 0 rt2]

[3*rt2 0]
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sage: f.dual()*theta

Product of:

* Form of level 6 and weight -4 and precision 5.

* Theta series with k=4, z1=1/3*(I*sqrt(2) + 1)*(sqrt(2) - 1),

z2=1/3*(I*sqrt(2) + 1)*(sqrt(2) - 1), l1=0, l2=0, prec=9

associated to an order of discriminant 6 with basis:

[1 0]

[0 1]

[ 1/2*rt2 1/2*rt2]

[ 3/2*rt2 -1/2*rt2]

[ 1/2 1/2]

[-3/2 1/2]

[ 0 rt2]

[3*rt2 0]

sage: (pi.n()/omega4)^(2*((4+1)-1))*0.5*(f.dual()*theta).integrate()

0.000289351851518 - 1.24523937669e-20*I

sage: 1/0.000289351851518

3456.00000398750

sage: 3456.factor()

2^7 * 3^3

Example C.3. Here’s a quick example illustrating the rationality of derivatives for f ∈
S2(11). We first evaluate directly via the q-expansion and then via the Shimizu correspon-
dence. The functionality illustrated below also works on non-split quaternion algebras; we
do it first on GL2 to demonstrate correctness.

sage: f = Form(CuspForms(11,2).0,prec); f

Form of level 11 and weight 2 and precision 200:

q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)

sage: tau = EllipticCurve(’11a’).heegner_point(-7,1).tau(); tau; tau=tau.n()

1/22*sqrt_minus_7 - 9/22

sage: omega = EllipticCurve([1,-1,0,-2,-1]).period_lattice().real_period();

omega

1.93331170561681

sage: [imag(tau)^(-4/2)*(2*pi.n()*I/omega)^(2*(2+2*j))/(-4*pi.n()*imag(tau))

^(2*j) * abs(f.deriv(j).evaluate(tau))^2 for j in [0,1,2]]

[77.000000000000, 847.00000000000, 232925.00000000]

sage: [imag(tau)^(-4/2)*(2*pi.n()*I/omega)^(2*(2+2*j))/(-4*pi.n()*imag(tau))

^(2*j) * 0.5*(f.at_prec(6).dual()*Theta(OO(1,11),11,2,j,j,tau,tau,12)).

integrate(ii) for j in [0,1,2]]

[76.9999999999160 - 5.26694055493770e-11*I, 847.000000228287 -

5.04460998029114e-12*I, 232925.000257534 + 1.95733349388877e-7*I]
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Example C.4. Let f ∈ S2(15) be the elliptic curve of conductor 15. Then f transfers to
fB on the indefinite quaternion algebra B of discriminant 15. We compute a maximal order
R in B, an optimal embedding into R of the maximal order in Q(

√
−7), the fixed point τ of

(1 +
√
−7)/2 under this embedding, and the absolute value squared of fB at τ ; we end up

with the rational number 72/(25.32.5).

sage: O = OO(15,1)

sage: g = O.basis[2] + O.basis[3]

sage: g^2 - g + 2 == 0

True

sage: tau = (-1/5*(-sqrt(-7) + sqrt(3))/(sqrt(3) - 1)) # fixed by g

sage: omega = EllipticCurve([1,-1,0,-2,-1]).period_lattice().real_period();

omega

1.93331170561681

sage: f = Form(CuspForms(15,2).0,5)

sage: theta = Theta(O,1,2,0,0,tau,tau,prec2)

sage: f.dual()*theta

Product of:

* Form of level 15 and weight -2 and precision 5:

q - q^2 - q^3 - q^4 + q^5 + O(q^6)

* Theta series with k=2, z1=1/5*(sqrt(-7) - sqrt(3))/(sqrt(3) - 1),

z2=1/5*(sqrt(-7) - sqrt(3))/(sqrt(3) - 1), l1=0, l2=0, prec=10

associated to an order of discriminant 15.1 with basis:

[1 0]

[0 1]

[ rt3 0]

[ 0 -rt3]

[1/2 1/2]

[5/2 1/2]

[ 1/2*rt3 1/2*rt3]

[-5/2*rt3 -1/2*rt3]

sage: (2*pi.n()/omega)^(2*2)*0.5*(f.dual()*theta).integrate(ii)

0.0340277777778 + 2.37565437957e-17*I

sage: guess = 7^2 / (2^5 * 3^2 * 5)

sage: guess.n()

0.0340277777777778

Example C.5. Finally, let’s do an example involving a non-maximal Eichler order in a
non-split quaternion algebra. Let f ∈ S2(30) be the newform of weight 2 and level 30, and
let R be an Eichler order of level 2 in the quaternion algebra B of discriminant 15. Then f
transfers to a form fB invariant under the norm one units in R. We compute fB(τ) for τ as
in the previous example and get 72/(26.3.5).
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sage: f = Form(CuspForms(30,2).newforms()[0],5)

sage: O = OO(15,2)

sage: g = O.basis[2] + O.basis[3]

sage: g^2 - g + 2 == 0

True

sage: tau = (-1/5*(-sqrt(-7) + sqrt(3))/(sqrt(3) - 1)).n()

sage: omega = EllipticCurve([1,-1,0,-2,-1]).period_lattice().real_period()

sage: theta = Theta(O,2,2,0,0,tau,tau,10)

sage: f.dual()*theta

Product of:

* Form of level 30 and weight -2 and precision 5:

q - q^2 + q^3 + q^4 - q^5 + O(q^6)

* Theta series with k=2, z1=-0.473205080756888 + 0.722832700602043*I,

z2=-0.473205080756888 + 0.722832700602043*I, l1=0, l2=0, prec=10

associated to an order of discriminant 15.2 with basis:

[1 0]

[0 1]

[ rt3 0]

[ 0 -rt3]

[ 1/2*rt3 + 1/2 1/2*rt3 + 1/2]

[-5/2*rt3 + 5/2 -1/2*rt3 + 1/2]

[ rt3 rt3]

[-5*rt3 -rt3]

sage: (2*pi.n()/omega)^(2*2)*0.5*(f.dual()*theta).integrate(ii)

0.0510416666666 + 1.51291501324e-13*I

sage: guess = 7^2 / (2^6 * 3 * 5)

sage: guess.n()

0.0510416666666667
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D. Norms of definite quaternionic modular forms in Magma: A primer
(by JOHN VOIGHT)

This document gives a very brief introduction to computing Hilbert modular forms using
Brandt matrices in Magma, with an application to computing the norm of a form as it arises
in a definite quaternion algebra via the Jacquet-Langlands correspondence.

The algorithm employed is due to Dembélé [5] with Donnelly [6], who also put in substan-
tial work in implementation, and they use algorithms for quaternion algebras implemented
by the author [37] with Kirschmer [16] and Donnelly. They are intended for use at the Ari-
zona Winter School 2011 and probably don’t explain everything very well—so if you have
any questions, please ask!

To load magma where it is installed, type magma. Inside the session, you can load this
demo by typing iload magma-defquat-demo.m, assuming you have the demo file. (You
need a sufficiently new version of Magma as well.)

D.1. A space of Hilbert cusp forms. We begin by first defining the field Q(
√

5) and
computing its ring of integers ZF .

> _<x> := PolynomialRing(Rationals());

> F<w> := NumberField(x^2-5);

> w^2;

5

> MinimalPolynomial(w);

x^2 - 5;

> Z_F := Integers(F);

We are now ready to define a space of cusp forms.

> M := HilbertCuspForms(F, 17*Z_F);

> M;

Cuspidal space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level: Ideal of norm 289 generated by [17, 0]

Weight: [ 2, 2 ]

Nothing has been computed so far—it has just created the hull of the space S2(17) of
Hilbert cusp forms of parallel weight (2, 2) (the default) and level (17) = 17ZF . Note that
17 is inert in F .

Now we compute the dimension and the action of a Hecke operator.

> Dimension(M);

5

> T2 := HeckeOperator(M, 2*Z_F);

> T2;

[-1 0 2 1 -2]
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[-1 2 -1 0 1]

[ 2 0 -1 1 -2]

[ 1 0 1 1 -2]

[-1 1 -1 0 0]

> CharacteristicPolynomial(T2);

x^5 - x^4 - 14*x^3 + 2*x^2 + 25*x + 3

> Factorization($1);

[

<x + 3, 1>,

<x^4 - 4*x^3 - 2*x^2 + 8*x + 1, 1>

]

The command $1 takes the output from the previous line. (Your T2 may vary, but the
characteristic polynomial should be the same!)

Therefore, the space S2(17) breaks up into at least two Hecke irreducible subspaces. We
can compute the complete decomposition as follows.

> newforms := NewformDecomposition(M);

>> newforms := NewformDecomposition(M);

^

Runtime error in ’NewformDecomposition’: Currently implemented only for new

spaces (constructed using NewSubspace)

Oops! We need to work in the new subspace. (This is a design decision: that the old
subspaces are not interesting and so should be factored out automatically.)

In this case, the space S2(1) has dimension zero, so all forms are new, but nevertheless we
should compute this directly.

> S := NewSubspace(M);

> S;

New cuspidal space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level: Ideal of norm 289 generated by [17, 0]

New level: Ideal of norm 289 generated by [17, 0]

Weight: [ 2, 2 ]

> Dimension(S);

5

> newforms := NewformDecomposition(S);

> newforms;

[*

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational Field
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Level: Ideal of norm 289 generated by [17, 0]

New level: Ideal of norm 289 generated by [17, 0]

Weight: [ 2, 2 ]

Dimension 1,

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level: Ideal of norm 289 generated by [17, 0]

New level: Ideal of norm 289 generated by [17, 0]

Weight: [ 2, 2 ]

Dimension 4

*]

So there are indeed two Hecke irreducible spaces, one of dimension 1 (corresponding to an
elliptic curve over F of conductor (17)) and one of dimension 4.

Let’s grab a constituent eigenform from each space and compute their Hecke eigenvalues.

> f := Eigenform(newforms[1]);

> g := Eigenform(newforms[2]);

> [[* Norm(pp), HeckeEigenvalue(f,pp) *] : pp in PrimesUpTo(20,F)];

[ [* 4, -3 *], [* 5, -2 *], [* 9, -6 *], [* 11, 0 *], [* 11, 0 *],

[* 19, -4 *], [* 19, -4 *] ]

This says for example that a(2)(f) = −3, a(
√

5) = −2, etc. One can identify this form
as the base change from Q of the unique classical elliptic cusp form of weight 2 and level
17—i.e., it corresponds to X0(17).

We can similarly compute with form g.

> [[* Norm(pp), HeckeEigenvalue(g,pp) *] : pp in PrimesUpTo(20,F)];

[ [* 4,

e

*], [* 5,

1/2*(e^3 - 5*e^2 + e + 7)

*], [* 9,

e^2 - 3*e

*], [* 11,

1/2*(-e^3 + 4*e^2 - e - 4)

*], [* 11,

1/2*(-e^3 + 4*e^2 - e - 4)

*], [* 19,

-e^3 + 3*e^2 + 3*e - 3

*], [* 19,

-e^3 + 3*e^2 + 3*e - 3

*] ]
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> H<e> := CoefficientField(g);

> H;

Number Field with defining polynomial x^4 - 4*x^3 - 2*x^2 + 8*x + 1 over the

Rational Field

> MinimalPolynomial(e);

x^4 - 4*x^3 - 2*x^2 + 8*x + 1

> Discriminant(H);

99584

> IsTotallyReal(H);

true

So we see that the field H generated by the Hecke eigenvalues of g is a totally real quartic
field of discriminant 99584.

Exercise D.1. What is Hecke ring and the Eisenstein ideal associated to the above form g?
What is the smallest conductor of a modular elliptic curve over Q(

√
7)?

If you know about modularity and base change, prove that f is indeed associated to the
base change of X0(17) to F .

D.2. Brandt matrices, inner products. We continue with the example from above. We
wish to compute with inner products. We first must define a few functions for this purpose
(which will probably make their way into the next release of Magma...). The code itself can
be safely ignored on a first reading (but must still be entered).

Coordinates := function(f);

fc := f‘coords_raw;

fc *:= Lcm([Denominator(fci) : fci in Eltseq(fc)]);

return fc;

end function;

Content := function(fc);

E := BaseRing(fc);

Z_E := Integers(E);

gg := ideal<Z_E | [fci : fci in Eltseq(fc)]>;

return gg;

end function;

InnerProductVec := function(f,g : Normalized := true);

fc := Coordinates(f);

gc := Coordinates(g);

Ef := BaseRing(fc);

Eg := BaseRing(gc);

Efg := CompositeFields(Ef, Eg)[1];
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Z_Efg := Integers(Efg);

M := Parent(f);

while assigned M‘Ambient do

M := M‘Ambient;

end while;

Mmat := M‘InnerProductBig;

innprod := (ChangeRing(fc, Efg)*

ChangeRing(Mmat, Efg)*

Transpose(Matrix(ChangeRing(gc, Efg))))[1];

if Normalized then

if Type(Z_Efg) eq RngInt then

innprod := innprod/(Generator(Content(fc))*Generator(Content(gc)));

innprod := (Integers()!innprod)*Integers();

else

innprod := ((Z_Efg!innprod)*Z_Efg)

/(Z_Efg!!Content(fc))/(Z_Efg!!Content(gc));

end if;

else

innprod := innprod*Integers(Efg);

end if;

return innprod;

end function;

We illustrate the use of these functions.

> Coordinates(f);

( 1 0 -1 0 0 0)

> Coordinates(g);

(1 1/2*(-3*e^3 + 6*e^2 + 21*e + 6) 1 -e^3 + 3*e^2 + 5*e - 3

1/2*(e^2 - 4*e - 3) e^3 - 3*e^2 - 4*e)

These are the coordinates for f and g with respect to a choice of basis for the space
M2(17). Note that this space is 6 dimensional, due to the presence of the 1-dimensional
space of Eisenstein series.

> InnerProductVec(f,f);

Ideal of Integer Ring generated by 12

> InnerProductVec(f,g);

Zero Principal Ideal

Generator:

[0, 0, 0, 0]

> InnerProductVec(g,g);

Principal Ideal
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Generator:

[780, 912, 972, -276]

We should factor the last inner product.

> innfact := Factorization($1);

> innfact;

[

<Prime Ideal

Two element generators:

[2, 0, 0, 0]

[1, 0, 1, 0], 9>,

<Prime Ideal

Two element generators:

[29, 0, 0, 0]

[24, 1, 0, 0], 1>,

<Principal Prime Ideal

Generator:

[3, 0, 0, 0], 1>,

<Prime Ideal

Two element generators:

[389, 0, 0, 0]

[279, 1, 0, 0], 1>

]

> [Norm(pp[1]) : pp in innfact];

[ 2, 29, 81, 389 ]

> for pp in innfact do

> bl, gen := IsPrincipal(pp[1]);

> if bl then print Norm(pp[1]), H!gen; end if;

> end for;

2 1/2*(-e^3 + 4*e^2 + e - 6)

29 1/2*(-e^2 + 4*e + 5)

81 3

389 1/2*(e^3 - 4*e^2 + 3*e - 8)

In the last step, we have give norms and the generators for the ideals which appear.

Exercise D.2. Compute 〈f, f〉 for the elliptic curve of smallest conductor over Q(
√

7).

D.3. Specifying the quaternion order. In the project, we will want to identify a form
which appears in several different guises (under the Jacquet-Langlands correspondence). For
this, we will specify the quaternion order which is being used.



63

We continue to work over F = Q(
√

5) but now we change the level. We work with
newforms of level (21) and to do so we first define a quaternion algebra ramified at the
primes (3), (7), and both real places.

> NN := ideal<Z_F | 3*7>;

> B := QuaternionAlgebra(NN, RealPlaces(F));

> B;

Quaternion Algebra with base ring F

> a, b := StandardForm(B);

> a, b;

-w - 5

42*w - 126

Thus we work with the quaternion algebra B =

(
a, b

F

)
=

(
−w − 5, 42w − 126

F

)
, i.e. the

algebra generated by i, j subject to i2 = a, j2 = b, and ji = −ij. (The algorithm employed
is probabilistic, so your a and b may be different.)

Now we compute a maximal order in this algebra and specify its use in the computation
of cusp forms.

> O := MaximalOrder(B);

> M := HilbertCuspForms(F, NN);

> S := NewSubspace(M : QuaternionOrder := O);

> Dimension(S);

7

> newforms := NewformDecomposition(S);

> newforms;

[*

New cuspidal space of Hilbert modular forms of dimension 1 over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level = Ideal of norm 441 generated by ( [21, 0] )

New at Ideal of norm 441 generated by ( [21, 0] )

Weight = [ 2, 2 ],

New cuspidal space of Hilbert modular forms of dimension 1 over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level = Ideal of norm 441 generated by ( [21, 0] )

New at Ideal of norm 441 generated by ( [21, 0] )

Weight = [ 2, 2 ],

New cuspidal space of Hilbert modular forms of dimension 1 over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level = Ideal of norm 441 generated by ( [21, 0] )

New at Ideal of norm 441 generated by ( [21, 0] )

Weight = [ 2, 2 ],
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New cuspidal space of Hilbert modular forms of dimension 1 over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level = Ideal of norm 441 generated by ( [21, 0] )

New at Ideal of norm 441 generated by ( [21, 0] )

Weight = [ 2, 2 ],

New cuspidal space of Hilbert modular forms of dimension 3 over

Number Field with defining polynomial x^2 - 5 over the Rational Field

Level = Ideal of norm 441 generated by ( [21, 0] )

New at Ideal of norm 441 generated by ( [21, 0] )

Weight = [ 2, 2 ]

*]

We see there are 4 Hecke irreducible spaces of dimension 1 and one of dimension 3. Let’s
work with the one of dimension 3.

> f := Eigenform(newforms[5]);

> [[* Norm(pp), HeckeEigenvalue(f, pp) *] : pp in PrimesUpTo(30,F)];

[ [* 4,

e

*], [* 5,

-e + 1

*], [* 9,

-1

*], [* 11,

2

*], [* 11,

2

*], [* 19,

1/2*(-e^2 + 5)

*], [* 19,

1/2*(-e^2 + 5)

*], [* 29,

-2*e

*], [* 29,

-2*e

*] ]

> H<e> := CoefficientField(f);

> H;

Number Field with defining polynomial x^3 - x^2 - 13*x + 5 over the Rational

Field

> Factorization(InnerProductVec(f,f));

[
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<Prime Ideal

Two element generators:

[2, 0, 0]

[1, 1, 0], 8>,

<Prime Ideal

Two element generators:

[5, 0, 0]

[7, 8, 4], 1>,

<Prime Ideal

Two element generators:

[37, 0, 0]

[8, 2, 0], 1>

]

Now we observe this form in a related quaternion algebra, ramified only at the real places
of F .

> B2 := QuaternionAlgebra(1*Z_F, RealPlaces(F));

> O2 := MaximalOrder(B2);

> S2 := NewSubspace(M : QuaternionOrder := O2);

> Dimension(S2);

7

> newforms2 := NewformDecomposition(S2);

> newforms2;

[*

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational

Field

Level: Ideal of norm 441 generated by [21, 0]

New level: Ideal of norm 441 generated by [21, 0]

Weight: [ 2, 2 ]

Dimension 1,

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational

Field

Level: Ideal of norm 441 generated by [21, 0]

New level: Ideal of norm 441 generated by [21, 0]

Weight: [ 2, 2 ]

Dimension 1,

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational

Field
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Level: Ideal of norm 441 generated by [21, 0]

New level: Ideal of norm 441 generated by [21, 0]

Weight: [ 2, 2 ]

Dimension 1,

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational

Field

Level: Ideal of norm 441 generated by [21, 0]

New level: Ideal of norm 441 generated by [21, 0]

Weight: [ 2, 2 ]

Dimension 1,

Cuspidal newform space of Hilbert modular forms over

Number Field with defining polynomial x^2 - 5 over the Rational

Field

Level: Ideal of norm 441 generated by [21, 0]

New level: Ideal of norm 441 generated by [21, 0]

Weight: [ 2, 2 ]

Dimension 3

*]

We identify the form f again as a constitutent in the unique irreducible space of dimension
3. But just to make sure, let’s check the Hecke eigenvalues.

> f2 := Eigenform(newforms2[5]);

> [[* Norm(pp), HeckeEigenvalue(f2, pp) *] : pp in PrimesUpTo(30,F)];

[ [* 4,

e

*], [* 5,

-e + 1

*], [* 9,

-1

*], [* 11,

2

*], [* 11,

2

*], [* 19,

1/2*(-e^2 + 5)

*], [* 19,

1/2*(-e^2 + 5)

*], [* 29,

-2*e

*], [* 29,
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-2*e

*] ]

> [MinimalPolynomial(HeckeEigenvalue(f2,pp)) eq

> MinimalPolynomial(HeckeEigenvalue(f,pp)) : pp in PrimesUpTo(30,F)];

[ true, true, true, true, true, true, true, true, true ]

Now we compute the inner product.

> Factorization(InnerProductVec(f2,f2));

[

<Prime Ideal

Two element generators:

[2, 0, 0]

[1, 1, 0], 9>,

<Prime Ideal

Two element generators:

[5, 0, 0]

[1, 2, 0], 2>,

<Principal Prime Ideal

Generator:

[3, 0, 0], 1>,

<Prime Ideal

Two element generators:

[37, 0, 0]

[8, 2, 0], 1>

]

We observe that 〈f, f〉1 | 〈f, f〉2. The project concerns exactly such relations between
these factorizations.

Exercise D.3. Match up the one-dimensional forms in the above spaces by their Hecke
eigenvalues. How do the factorizations of 〈f, f〉B compare for these forms for the different
quaternion algebras B?

Exercise D.4. Let N be the product of the first 4 primes over Q(
√

5). Compute the norm
〈f, f〉B for each newform of level N in each of its quaternionic manifestations, i.e. for each
quaternion algebra B of discriminant dividing N (which will necessarily be composed of an
even number of prime factors).
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congruences entre formes modulaires. (French) [Faltings height of quotients of J0(N), Hecke algebra
discriminants and congruences between modular forms] Amer. J. Math. 122 (2000), no. 1, 83115.
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